A LEVEL Cambridge Topical Past Papers

FURTHER STATISTICS

2020 - 2024

Chapter 18	Further Work On Distributions	Page 1
Chapter 19	Inference Using Normal And T-Distributions	Page 2
Chapter 20	X2 Test	Page 25
Chapter 21	Bivariate Data Simple	
Chapter 24	Non Parametric Test	Page 44
Chapter 25	Continuous Random Variable	Page 65
Chapter 26	Probability Generating Function	Page 98
	ANSWERS	Page 129

1 - (9231/42_Winter_2024_Q3) - Further Work On Distributions, X2 Test

Rosie sows 5 seeds in each of 150 plant pots. The number of seeds that germinate is recorded for each pot. The results are summarised in the following table.

Number of seeds that germinate	0	1	2	3	4	5
Number of pots	12	40	43	35	16	4

Rosie suggests that the number of seeds that germinate follows the binomial distribution B(5, p).

(a) Use Rosie's results to show that p = 0.42.

I11

(b) Carry out a goodness of fit test, at the 10% significance level, to test whether the distribution B(5, 0.42) is a good fit for the data. [9]

2 - (9231/43_Winter_2024_Q3) - Further Work On Distributions, X2 Test

A statistician believes that the number of telephone calls received by an advice centre in a 10-minute interval can be modelled by the Poisson distribution Po(1.9). The number of calls received in a randomly chosen 10-minute interval was recorded on each of 100 days. The results are summarised in the table, together with some of the expected frequencies corresponding to the distribution Po(1.9).

Number of calls	0	1	2	3	4	5	6 or more
Observed frequency	10	18	35	21	11	4	1
Expected frequency	14.957	28.418	26.997				1.322

(a) Complete the table.

[2]

(b) Carry out a goodness of fit test, at the 10% significance level, to determine whether the statistician's belief is reasonable.

1 - (9231/41_Summer_2020_Q4) - Inference Using Normal And T-distributions

A company has two different machines, X and Y, each of which fills empty cups with coffee. The manager is investigating the volumes of coffee, x and y, measured in appropriate units, in the cups filled by machines X and Y respectively. She chooses a random sample of 50 cups filled by machine X and a random sample of 40 cups filled by machine Y. The volumes are summarised as follows.

$$\Sigma x = 15.2$$
 $\Sigma x^2 = 5.1$ $\Sigma y = 13.4$ $\Sigma y^2 = 4.8$

The manager claims that there is no difference between the mean volume of coffee in cups filled by machine *X* and the mean volume of coffee in cups filled by machine *Y*.

Test the manager's claim at the 10% significance level.

[9]

2 - (9231/41_Summer_2020_Q5) - Inference Using Normal And T-distributions

A large number of children are competing in a throwing competition. The distances, in metres, thrown by a random sample of 8 children are as follows.

- (a) Assuming that distances are normally distributed, test, at the 5% significance level, whether the population mean distance thrown is more than 22.0 metres. [7]
- (b) Find a 95% confidence interval for the population mean distance thrown. [3]
- 3 (9231/43_Summer_2020_Q2) Inference Using Normal And T-distributions

A random sample of 40 observations of a random variable X and a random sample of 50 observations of a random variable Y are taken. The resulting values for the sample means, \bar{x} and \bar{y} , and the unbiased estimates, s_x^2 and s_y^2 , for the population variances are as follows.

$$\overline{x} = 24.4$$
 $\overline{y} = 17.2$ $s_x^2 = 10.2$ $s_y^2 = 11.1$

Find a 90% confidence interval for the difference between the population means of X and Y. [5]

4 - (9231/43_Summer_2020_Q5) - Inference Using Normal And T-distributions

Students at two colleges, A and B, are competing in a computer games challenge.

(a) The time taken for a randomly chosen student from college A to complete the challenge has a normal distribution with mean μ minutes. The times taken, x minutes, are recorded for a random sample of 10 students chosen from college A. The results are summarised as follows.

$$\Sigma x = 828$$
 $\Sigma x^2 = 68622$

A test is carried out on the data at the 5% significance level and the result supports the claim that $\mu > k$.

Find the greatest possible value of k.

[4]

ANSWERS

2020 - 2024 129

1 - (9231/42_Winter_2024_Q3) - Further Work On Distributions, X2 Test

(a)	$\overline{x} = \frac{40 + 86 + 10}{15}$	$\frac{5+64+20}{0}$	$=\frac{315}{150}=2.1,$	$p=\frac{2}{n}$	B1	Must see either 315 or 2.1. AG				
								1		
(b)	Number of seeds that	0	1	2	3	4	5	В1	Calculate expected frequencies (must be seen) at least 2 correct to at least 2 decimal places.	
	germinate							B1	At least 4 correct to at least 2 decimal places.	
	Number of pots	12	40	43	35	16	4			
	Expected frequency	9.846	35.6475	51.627	37.3845	13.536	1.9605			
	Combine last tw	o columns						М1	20, 15.50, may be implied by answer 3.90 – 3.91.	
	Chi-squared con 0.4712 0.5314		.1521 1.308	38				M1	At least 2 correct, may be implied by answer 3.90 – 3.91.	
	Test statistic = 3	.905						A1	accept 3.90 - 3.910	
	H ₀ : Binomial B(data	В1	Allow 'Binomial' for 'B(5, 0.42)' Allow 'Number of seeds that germinate can be modelled by B(5, 0.42)'				
	Critical value is	6.251			В1	Must come from combined columns. Allow 7.779.				
	'3.905' < '6.251' Accept H ₀								Reject H ₁ , not significant.	
	Insufficient evid	ence to sug	gest that B(5	5, 0.42) is a	A1	Correct work only, including hypotheses, level o uncertainty in language.				
								9		

2 - (9231/43_Winter_2024_Q3) - Further Work On Distributions, X2 Test

(a)	17.098 8.1	22 3.086				B1	One correct.
					B1	All correct.	
					200	2	
(b)	0	1	2	3	4 or more	M1	
	10	18	35	21	16		Last two or three columns combined.
	14.957	28.418	26.997	17.098	12.53		
	Contributions to test statistic are: 1.6428 3.8192 2.3724 0.8905 0.9609(7)						May be implied by awrt 9.69
	Test statist	tic is 9.69	18		A1	9.686	
			fit for the da od fit for th		В1		
	Critical va	lue is 7.779	, compare "	9.69' > 7.77	79 reject H₀	M1	4 degrees of freedom
			suggest tha reject/not s		A1	Correct work only, including hypotheses , in context, level of uncertainty in language.	
						6	

2020 - 2024 130 Powered By : www.exam-mate.com

1 - (9231/41_Summer_2020_Q4) - Inference Using Normal And T-distributions

$H_0: \ \mu_x = \mu_y \ H_1: \ \mu_x \neq \mu_y$	B1
$s_x^2 = \frac{1}{49} \left(5.1 - \frac{15.2^2}{50} \right) = 0.0097796; \ s_y^2 = \frac{1}{39} \left(4.8 - \frac{13.4^2}{40} \right) = 0.007974$	MIAI
$s^2 = \frac{0.00977959}{50} + \frac{0.007974}{40} = 0.0003949$	M1A1
$z = \frac{0.304 - 0.335}{\sqrt{0.0003949}} = (-)1.56$	M1A1
Compare with 1.645	MI
Accept H ₀ : insufficient evidence to reject manager's claim	A1
	9

2 - (9231/41_Summer_2020_Q5) - Inference Using Normal And T-distributions

(a)	$\sum x = 183.6, \ \sum x^2 = 4249.08, \ \overline{x} = 22.95$	B
	$s^2 = \frac{1}{7} \left(4249.08 - \frac{183.6^2}{8} \right) = 5.066$	Mi
	H_0 : $\mu = 22.0$, H_1 : $\mu > 22.0$	Bi
	$t = \frac{22.95 - 22.0}{\sqrt{\frac{s^2}{8}}} = 1.194$	M1A1
	Compare t with correct tabular value 1.895	M1
	Accept H ₀ : mean distance thrown is not more than 22.0 m	Al
		7
(b)	$22.95 \pm i\sqrt{\frac{s^2}{8}}$	MI
	With t = 2.365	B1
	[21.1, 24.8]	Al
		3

3 - (9231/43_Summer_2020_Q2) - Inference Using Normal And T-distributions

$s^2 = \frac{10.2}{40} + \frac{11.1}{50} = 0.477$	MIA1
$CI = (24.4 - 17.2) \pm zs$	M1
$= (24.4 - 17.2) \pm 1.645\sqrt{0.477}$	A1
= [6.06, 8.34]	Al
	5