A LEVEL Cambridge Topical Past Papers

FURTHER MECHANICS

2020 - 2024

Chapter 13	Momentum And Impulse	Page 1
Chapter 14	Circular Motion	Page 28
Chapter 15	Equilibrium Of A Rigid Body Under Coplanar Forces	Page 55
Chapter 16	Rotation Of A Rigid Body	Page 77
Chapter 17	Simple Harmonic Motion	Page 79
Chapter 22	Projectile Motion	Page 85
Chapter 23	Linear Motion Under Variable Force	Page 110
Chapter 27	HOOK'S LAW	Page 130
	ANSWERS	Page 148

1 - (9231/31_Summer_2020_Q6) - Momentum And Impulse

A particle P of mass m is moving with speed u on a fixed smooth horizontal surface. The particle strikes a fixed vertical barrier. At the instant of impact the direction of motion of P makes an angle α with the barrier. The coefficient of restitution between P and the barrier is e. As a result of the impact, the direction of motion of P is turned through 90° .

(a) Show that
$$\tan^2 \alpha = \frac{1}{e}$$
. [3]

The particle *P* loses two-thirds of its kinetic energy in the impact.

(b) Find the value of α and the value of e.

[5]

2 - (9231/33_Summer_2020_Q5) - *Momentum And Impulse*

Two uniform smooth spheres A and B of equal radii each have mass m. The two spheres are each moving with speed u on a horizontal surface when they collide. Immediately before the collision A's direction of motion makes an angle of α° with the line of centres, and B's direction of motion is perpendicular to that of A (see diagram). The coefficient of restitution between the spheres is e.

Immediately after the collision, B moves in a direction at right angles to the line of centres.

(a) Show that
$$\tan \alpha = \frac{1+e}{1-e}$$
. [4]

(b) Given that $\tan \alpha = 2$, find the speed of A after the collision. [4]

3 - (92	231/31_Winter_2020_Q6) - Momentum And Impulse
a sı	o smooth spheres A and B have equal radii and masses m and $2m$ respectively. Sphere B is at rest on mooth horizontal floor. Sphere A is moving on the floor with velocity u and collides directly with B , a coefficient of restitution between the spheres is e .
(a)	Find, in terms of u and e , the velocities of A and B after the collision. [3]
	e coefficient of restitution between B and the wall is $\frac{2}{3}$. Immediately after B collides with the wall, kinetic energy of A is $\frac{5}{32}$ of the kinetic energy of B .
(b)	Find the possible values of e . [7]

2020 - 2024 2 Powered By : www.exam-mate.com

4 - (9231/32_Winter_2020_Q2) - Momentum And Impulse

Two uniform smooth spheres A and B of equal radii have masses 2m and m respectively. Sphere B is at rest on a smooth horizontal surface. Sphere A is moving on the surface with speed u and collides with B. Immediately before the collision, the direction of motion of A makes an angle α with the line of centres of the spheres, where $\tan \alpha = \frac{4}{3}$ (see diagram). The coefficient of restitution between the spheres is $\frac{1}{3}$.

Find the speed of A after the collision.

[5]

5 - (9231/32_Winter_2020_Q4) **-** *Momentum And Impulse*

A particle P of mass m is moving in a horizontal circle with angular speed ω on the smooth inner surface of a hemispherical shell of radius r. The angle between the vertical and the normal reaction of the surface on P is θ .

(a) Show that
$$\cos \theta = \frac{g}{\omega^2 r}$$
. [3]

The plane of the circular motion is at a height x above the lowest point of the shell. When the angular speed is doubled, the plane of the motion is at a height 4x above the lowest point of the shell.

(b) Find
$$x$$
 in terms of r . [4]

ANSWERS

2020 - 2024 148

1 - (9231/31_Summer_2020_Q6) - *Momentum And Impulse*

(a)	Let components of velocity (parallel to plane and perpendicular) after impact be (x, y)	
	$y = v\cos\alpha = eu\sin\alpha$	В
	$x = v \sin \alpha = u \cos \alpha$	В
	Divide: $\tan \alpha = \frac{1}{e \tan \alpha} : \tan^2 \alpha = \frac{1}{e}$.	В

$v^2 = \frac{1}{3}u^2$	В
$\left(\frac{u\cos\alpha}{\sin\alpha}\right)^2 = \frac{1}{3}u^2$	М
$(\tan\alpha)^2=3$	M
$\alpha = 60^{\circ}$	A
$e = \frac{1}{3}$	Al
Alternative method for 6(b)	
KE after impact = $\frac{1}{2}m(x^2 + y^2) = \frac{1}{2}m((u\cos\alpha)^2 + e^2(u\sin\alpha)^2)$	M1
From (a) $\sin \alpha = 1/\sqrt{(1+e)}$ and $\cos \alpha = \sqrt{e}/\sqrt{(1+e)}$	B1
$KE = \frac{1}{2}mu^2\left(\frac{e}{1+e} + \frac{e^2}{1+e}\right) = \frac{1}{2}mu^2e$	A1
This is equal to $\frac{1}{3} \times \frac{1}{2} mu^2$ so $e = \frac{1}{3}$	M1
$\tan \alpha = \sqrt{3}, \ \alpha = 60^{\circ}$	A1
	5

2020 - 2024 Powered By : www.exam-mate.com

2 - (9231/33_Summer_2020_Q5) **-** *Momentum And Impulse*

(a)	Let w be speed of A along line of centres after collision	М
	$\leftarrow mw = -mu\cos\alpha + mu\sin\alpha$	
	$w - 0 = e(u\cos\alpha + u\sin\alpha)$	М
	Rearrange: $\sin \alpha (u - eu) = \cos \alpha (u + eu)$	М
	$\tan \alpha = \frac{1+e}{1-e} . AG$	A
(b)	$\tan \alpha = 2 \Rightarrow e = \frac{1}{3}$	В
	$w = \frac{1}{3}u\left(\frac{1}{\sqrt{5}} + \frac{2}{\sqrt{5}}\right) = \frac{u}{\sqrt{5}}$	M
	$Speed = \sqrt{w^2 + (u \sin \alpha)^2}$	M
	$=\sqrt{\frac{u^2}{5} + \frac{4u^2}{5}} = u$	A

3 - (9231/31_Winter_2020_Q6) - *Momentum And Impulse*

mu = mw + 2mv

		1175	
	v-w=eu	B1	Restitution with consistent signs
	$v = \frac{u}{3}(e+1)$ $w = \frac{u}{3}(1-2e)$	B1	Both correct.
		3	
	Perpendicular to plane: $y = ev \sin \theta$ Parallel to plane: $x = v \cos \theta$	B1	Both
	Speed of $B = \sqrt{x^2 + y^2} = \sqrt{v^2 \left(\frac{4}{5})^2 + \left(\frac{2}{3} \cdot \frac{3}{5}\right)^2\right)} = \frac{2}{\sqrt{5}}v$	M1	Speed of B
	KE of $B = \frac{1}{2} \cdot 2m \frac{4}{5} \cdot \frac{u^2}{9} (e+1)^2$	М1	KE of B in terms of $u \cdot \frac{1}{2}$ and $2m$ needed
	KE of $A = \frac{1}{2} m \cdot \frac{u^2}{9} (1 - 2e)^2$ So $\frac{1}{2} m \cdot \frac{u^2}{9} (1 - 2e)^2 = \frac{5}{32} \cdot \frac{1}{2} \cdot 2m \cdot \frac{4}{5} \cdot \frac{u^2}{9} (e + 1)^2$	M1 A1	Relate the two KEs
	$4(1-2e)^2 = (e+1)^2$ or $15e^2 - 18e + 3 = 0$	M1	Rearrange and simplify to quadratic
	$1+e = \pm 2(1-2e)$ $e = \frac{1}{5}, 1$	A1	Both values
		7	

B1 Momentum equation (with m)

2020 - 2024 150 Powered By: www.exam-mate.com

4 - (9231/32_Winter_2020_Q2) **-** *Momentum And Impulse*

Speeds v and w after collision $2mv + mw = 2mu \cos \alpha$	M1	Momentum equation with m. Correct masses, allow sin instead of cos
$w - v = eu \cos \alpha$	M1	Restitution, with consistent signs
$v = \frac{1}{3}u\cos\alpha(2-e) = \frac{1}{3}u.\frac{3}{5}\left(2-\frac{1}{3}\right) = \frac{1}{3}u$	A1	
Square of speed of $A = \left(\frac{1}{3}u\right)^2 + \left(u\sin\alpha\right)^2$	M1	Uses correct speed perpendicular to motion
$= \left(\frac{1}{3}u\right)^2 + \left(\frac{4}{5}u\right)^2$ Speed = $\frac{13}{15}u$ (= 0.867 <i>u</i>)	A1	
15	5	

5 - (9231/32_Winter_2020_Q4) **-** *Momentum And Impulse*

	Ref. of the contract of the co	T 11 1 3/23	
(a)	$\uparrow N\cos\theta = mg$	B1	
	$\leftarrow N\sin\theta = mr\sin\theta\omega^2$	B1	XV
	$\cos\theta = \frac{mg}{N}$ so $\cos\theta = \frac{g}{\omega^2 r}$	B1	AG
		3	
(b)	$\cos\theta = \frac{r - x}{r} = \frac{g}{\omega^2 r}$	В1	Using trig of situation: must involve x
	In new situation: $r - 4x = r \times \frac{g}{4\omega^2 r}$	M1	Using new situation with $4x$ and 2ω seen
	r - x = 4(r - 4x)	M1	Combining
	$x = \frac{1}{5}r$	A1	
		4	

6 - (9231/31_Summer_2021_Q6) - *Momentum And Impulse*

(a)	Along line of centres, speeds v_1 and v_2 $mv_1 + mv_2 = mu \cos \alpha - mu \cos \beta$	M1	Momentum (condone missing masses).
	$v_2 - v_1 = eu(\cos \beta + \cos \alpha)$	M1	Restitution.
	Both correct, masses seen.	A1	
	$v_1 = 0$ so A has no speed along line of centres: moves perpendicular to line of centres	A1	AG.
		4	
(b)	$(v_2 = \frac{1}{2}u\cos\alpha = u\cos\beta)$ KE of B after collision is $\frac{1}{2}m(v_2^2 + (u\sin\beta)^2)$ KE of A after collision = $\frac{1}{2}m(u\sin\alpha)^2$	M1	Both components.
	Add both KEs and equate to $\frac{3}{4}mu^2$	M1	
	Simplify to equation in $\sin \alpha$	M1	
	$\sin\alpha = \frac{1}{\sqrt{2}}, \ \alpha = 45^{\circ}$	A1	
		4	

2020 - 2024 151 Powered By: www.exam-mate.com