A LEVEL Cambridge Topical Past Papers

FURTHER MATHEMATICS

P1,P2

2020 — 2024

Chapter 1	Roots Of Polynomial Equations	Page 1
Chapter 2	Rational Functions And Graphs	Page 34
Chapter 3	Summation Of Series	Page 71
Chapter 4	Matrices	Page 111
Chapter 5	Polar Coordinates	Page 185
Chapter 6	Vectors	Page 218
Chapter 7	Proof By Induction	Page 252
Chapter 8	Hyperbolic Functions	Page 258
Chapter 9	Differentiation	Page 288
Chapter 10	Integration	Page 315
Chapter 11	Complex Numbers	Page 382
Chapter 12	Differential Equations	Page 403
	ANSWERS	Page 426

Find a cubic equation whose roots are α^2 , β^2 , γ^2 .	[3]
It is given that $\alpha^2 + \beta^2 + \gamma^2 = 2(\alpha + \beta + \gamma)$.	
(i) Find the value of p.	[3]

(ii)

Find the value of $\alpha^3 + \beta^3 + \gamma^3$.	[2]
	,

	cubic equation $7x^3 + 3x^2 + 5x + 1 = 0$ has roots α , β , γ .	
(a)	Find a cubic equation whose roots are α^{-1} , β^{-1} , γ^{-1} .	[3]
(b)	Find the value of $\alpha^{-2} + \beta^{-2} + \gamma^{-2}$.	[2]
(c)	Find the value of $\alpha^{-3} + \beta^{-3} + \gamma^{-3}$.	[2]

Show that $\alpha^6 + \beta^6 + \gamma^6 = 3 - 2c^3$.	•	$\alpha^3, \beta^3, \gamma^3$.
Show that $\alpha^6 + \beta^6 + \gamma^6 = 3 - 2c^3$.		
Show that $\alpha^6 + \beta^6 + \gamma^6 = 3 - 2c^3$.		
Show that $\alpha^6 + \beta^6 + \gamma^6 = 3 - 2c^3$.		
Show that $\alpha^6 + \beta^6 + \gamma^6 = 3 - 2c^3$.		
Show that $\alpha^6 + \beta^6 + \gamma^6 = 3 - 2c^3$.		
		0
	w that $\alpha^{6} + \beta^{6} + \gamma^{6} = 3 - 2c^{3}$	P.
	vi diae 60 + p + 1	L.
	1).	

(c) Find the real value of c for which the matrix $\begin{pmatrix} 1 & \alpha^3 & \beta^3 \\ \alpha^3 & 1 & \gamma^3 \\ \beta^3 & \gamma^3 & 1 \end{pmatrix}$ is singular.

[5]

2020 - 2024 5 Powered By: www.exam-mate.com

a)	State the value of d .	[1
b)	Find a cubic equation, with coefficients in terms of b and c , whose roots are α	$-1, \beta+1, \gamma+1$ [3
)
c)	Given also that $\gamma+1=-\alpha-1$, deduce that $(c-2b+3)(b-3)=b-c$.	[4
c)	Given also that $\gamma+1=-\alpha-1$, deduce that $(c-2b+3)(b-3)=b-c$.	[4
(c)	Given also that $\gamma+1=-\alpha-1$, deduce that $(c-2b+3)(b-3)=b-c$.	[4
c)	Given also that $\gamma+1=-\alpha-1$, deduce that $(c-2b+3)(b-3)=b-c$.	[4
c)	Given also that $\gamma+1=-\alpha-1$, deduce that $(c-2b+3)(b-3)=b-c$.	[4
(c)	Given also that $\gamma+1=-\alpha-1$, deduce that $(c-2b+3)(b-3)=b-c$.	[4
c)	Given also that $\gamma+1=-\alpha-1$, deduce that $(c-2b+3)(b-3)=b-c$.	[4
c)	Given also that $\gamma+1=-\alpha-1$, deduce that $(c-2b+3)(b-3)=b-c$.	[4
(c)	Given also that $\gamma+1=-\alpha-1$, deduce that $(c-2b+3)(b-3)=b-c$.	[4

5 - (9231/11_Summer_2021_Q3) **-** *Roots Of Polynomial Equations*

The equation $x^4 - 2x^3 - 1 = 0$ has roots α , β , γ , δ .

(a) Find a quartic equation whose roots are α^3 , β^3 , γ^3 , δ^3 and state the value of $\alpha^3 + \beta^3 + \gamma^3 + \delta^3$.

	nd the value of $\frac{1}{\alpha^3} + \frac{1}{\beta^3} + \frac{1}{\gamma^3} + \frac{1}{\delta^3}$.		[3
••••			
••••			•••••
••••			
••••			
••••			J
		. Ω.•	
		X	
••••			

 Fir	and the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.		
 Fir	nd the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.		[2
 Fir	and the value of $\alpha^4+\beta^4+\gamma^4+\delta^4$.		[2
 Fir	nd the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.		[2
••••	nd the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.		[2
••••			[2
••••			[2
			[2
••••			[2

	bic equation $2x^3 - 4x^2 + 3 = 0$ has roots α , β , γ . Let $S_n = \alpha^n + \beta^n + \gamma^n$.	
) St	ate the value of S_1 and find the value of S_2 .	[3]
•••		
•••		
		0.
•••		
) (i)	Express S_{n+3} in terms of S_{n+2} and S_n .	[1]
	V 1	
(ii)	Hence, or otherwise, find the value of S_4 .	[2]
()		L

sim	the substitution $y = S_1 - x$, where S_1 is the numerical value found in part plify an equation whose roots are $\alpha + \beta$, $\beta + \gamma$, $\gamma + \alpha$.	[3
•••••		
		<u> </u>
•••••		
•••••		
•••••		
	(7)	
Fine	d the value of $\frac{1}{\alpha + \beta} + \frac{1}{\beta + \gamma} + \frac{1}{\gamma + \alpha}$.	[:
	$\alpha + \beta + \beta + \gamma + \gamma + \alpha$	L'
•••••		

7 - (9231/11_Winter_2021_Q1) - Roots Of Polynomial Equations

It is given that

$$\alpha + \beta + \gamma = 3$$
, $\alpha^{2} + \beta^{2} + \gamma^{2} = 5$, $\alpha^{3} + \beta^{3} + \gamma^{3} = 6$.

The cubic equation $x^3 + bx^2 + cx + d = 0$ has roots α , β , γ .

Find the values of b, c and d.

[6]

2020 - 2024 Powered By: www.exam-mate.com

Find the value of $\alpha^2 + \beta^2 + \gamma^2$.	[2]
Show that $\alpha^3 + \beta^3 + \gamma^3 = 1$.	[2]

(c) Use standard results from the list of formulae (MF19) to show that

$$\sum_{r=1}^n \left((\alpha+r)^3+(\beta+r)^3+(\gamma+r)^3\right)=n+\tfrac14 n(n+1)\left(an^2+bn+c\right),$$
 where a,b and c are constants to be determined.

[6]

 $\textbf{9} \quad \textbf{-} \; (9231/11_Summer_2022_Q4) \; \textbf{-} \; \textit{Roots Of Polynomial Equations}$

The cubic equation $2x^3 + 5x^2 - 6 = 0$ has roots α , β , γ .

(a) Find a cubic equation whose roots are $\frac{1}{\alpha^3}$, $\frac{1}{\beta^3}$, $\frac{1}{\gamma^3}$. [3]

(b) Find the value of $\frac{1}{\alpha^6} + \frac{1}{\beta^6} + \frac{1}{\gamma^6}$.

(c) Find also the value of $\frac{1}{\alpha^9} + \frac{1}{\beta^9} + \frac{1}{\gamma^9}$.

[2]

2020 - 2024 Powered By: www.exam-mate.com

The	e cubic equation $x^3 + bx^2 + d = 0$ has roots α , β , γ , where $\alpha = \beta$ and $d \neq 0$.	
(a)	Show that $4b^3 + 27d = 0$.	[5]
	. 0.0	
(b)	Given that $2\alpha^2 + \gamma^2 = 3b$, find the values of b and d.	[3]
		•••••

1 1 1 1
Find a quartic equation whose roots are $\frac{1}{\alpha^2}$, $\frac{1}{\beta^2}$, $\frac{1}{\gamma^2}$, $\frac{1}{\delta^2}$ and state the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\beta^2}$

		. 0.
Find the value of	of $\frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\gamma^4} + \frac{1}{\delta^4}$.	
Find the value o	of $\frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\gamma^4} + \frac{1}{\delta^4}$.	
Find the value o	of $\frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\gamma^4} + \frac{1}{\delta^4}$.	
Find the value o	of $\frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\gamma^4} + \frac{1}{\delta^4}$.	
Find the value o	of $\frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\gamma^4} + \frac{1}{\delta^4}$.	
Find the value o	of $\frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\gamma^4} + \frac{1}{\delta^4}$.	
	of $\frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\gamma^4} + \frac{1}{\delta^4}$.	

The		
a)	Find the value of $\alpha^2 + \beta^2 + \gamma^2$.	[.
		~ () , °
b)	Use standard results from the list of formulae (MF19) to show that $\sum_{r=1}^n \left((\alpha+r)^2+(\beta+r)^2+(\gamma+r)^2\right)=n(n^2+an+a^2)$	b),
b)	Use standard results from the list of formulae (MF19) to show that $\sum_{r=1}^n \left((\alpha+r)^2+(\beta+r)^2+(\gamma+r)^2\right)=n(n^2+an+a)$ where a and b are constants to be determined.	
b)	$\sum_{r=1}^{n} ((\alpha + r)^{2} + (\beta + r)^{2} + (\gamma + r)^{2}) = n(n^{2} + an + r)^{2}$	
b)	$\sum_{r=1}^{n} ((\alpha + r)^{2} + (\beta + r)^{2} + (\gamma + r)^{2}) = n(n^{2} + an + r)^{2}$	
b)	$\sum_{r=1}^{n} ((\alpha + r)^{2} + (\beta + r)^{2} + (\gamma + r)^{2}) = n(n^{2} + an + r)^{2}$	b),
b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + a$	
b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + a$	
b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + a$	
b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + a$	
b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + a$	
b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + a$	
b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + a$	
b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + a$	
b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + a$	
b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + a$	
b)	$\sum_{r=1}^{n} \left((\alpha + r)^2 + (\beta + r)^2 + (\gamma + r)^2 \right) = n(n^2 + an + a$	

A-Level Cambridge	FURTHER MATHEMATICS - P1, P2	CH1 - Roots of polynomial equations
		ر ا
	0 - 3	
		•••

2020 - 2024 20 Powered By : www.exam-mate.com

Find a quartic equation whose roots are α^2 , β^2 , γ^2 , δ^2 and state the value of $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$
V ()
27

(b) Find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} + \frac{1}{\delta^2}$.	[3
(c) Find the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.	[2
(c) Find the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.	[2
(c) Find the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.	[2
(c) Find the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.	[2
(c) Find the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.	[2
	[2
	[2
	[2

C	curve C has equation $y = \frac{x^2 + 2x + 1}{x - 3}$.	
F	Find the equations of the asymptotes of C .	[3]
F	Find the coordinates of the turning points on C .	[3]
F	Find the coordinates of the turning points on <i>C</i> .	[3]
 F	Find the coordinates of the turning points on <i>C</i> .	[3]
	Find the coordinates of the turning points on <i>C</i> .	[3]

(c) Sketch C.

[3]

(d) Sketch the curves with equations $y = \left| \frac{x^2 + 2x + 1}{x - 3} \right|$ and $y^2 = \frac{x^2 + 2x + 1}{x - 3}$ on a single diagram, clearly identifying each curve. [4]

2020 - 2024 24 Powered By : www.exam-mate.com

15 • (9231/11_Winter_2023_Q3) • Roots Of Polynomial Equations

The quartic equation $x^4 + bx^3 + cx^2 + dx - 2 = 0$ has roots α , β , γ , δ . It is given that

$$\alpha+\beta+\gamma+\delta=3, \qquad \qquad \alpha^2+\beta^2+\gamma^2+\delta^2=5, \qquad \qquad \alpha^{-1}+\beta^{-1}+\gamma^{-1}+\delta^{-1}=6.$$

$$\alpha^{-1} + \beta^{-1} + \gamma^{-1} + \delta^{-1} = 6.$$

(a)	Find the values of b , c and d .	[6]

<u></u>
•••••

(b)	Given also that $\alpha^3 + \beta^3 + \gamma^3 + \delta^3 = -27$, find the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.	[2]

A Y	

	cubic equation $27x^3 + 18x^2 + 6x - 1 = 0$ has roots α , β , γ .
)	Show that a cubic equation with roots $3\alpha + 1$, $3\beta + 1$, $3\gamma + 1$ is
	$y^3 - y^2 + y - 2 = 0. ag{5}$

) Fi	and the values of S_2 and S_3 . [4]
•••	
•••	
•••	
•••	
•••	
) Fi	ind the values of S and S
) Fi	and the values of S_{-1} and S_{-2} .
) Fi 	and the values of S_{-1} and S_{-2} .
) Fi 	and the values of S_{-1} and S_{-2} .
) Fi 	and the values of S_{-1} and S_{-2} .
	and the values of S_{-1} and S_{-2} . [3]

The	e cubic equation $2x^3 + x^2 - px - 5 = 0$, where p is a positive constant, has root	ts α , β , γ .
(a)	State, in terms of p , the value of $\alpha\beta + \beta\gamma + \gamma\alpha$.	[1]
(1)	T' 1.1 1 C 2 0 1 02 1 02 1 02 2	
(D)	Find the value of $\alpha^2 \beta \gamma + \alpha \beta^2 \gamma + \alpha \beta \gamma^2$.	[2]
		.0.
	V.	

2020 - 2024 28 Powered By: www.exam-mate.com

A-Level	Cambridge	FURTHER MATHEMATICS - P1, P2	CH1 - Roots of polynomial equations
(c)	Deduce a cubic equation w	whose roots are $\alpha\beta$, $\beta\gamma$, $\alpha\gamma$.	[1]
(d)	Given that $\alpha^2 + \beta^2 + \gamma^2 =$	$\frac{1}{3}$, find the value of p .	[2]
		V°	

2020 - 2024 29 Powered By: www.exam-mate.com

	2 -2 2	
Find a cubic equation whose root	s are $\alpha^2 + 1$, $\beta^2 + 1$, $\gamma^2 + 1$.	
		~ O , •
		/
,50		
2		
		•••••
		•••••

Find the					
***************************************	•••••		•••••	•••••	•••••
•••••	•••••		•••••	•••••	•••••
•••••	••••••				
	•••••		•••••		•••••
••••••	••••••		•••••		••••••
•••••					
***********	• • • • • • • • • • • • • • • • • • • •				
					(),°
***************************************	•••••	•••••	••••••		
•••••	•••••				
	• • • • • • • • • • • • • • • • • • • •	***************************************			
		3 (2)3 (2)3		
Find the	value of $(\alpha^2 + 1)$	$(\beta^2 + 1)^3 + (\gamma^2 - 1)^3 + $	+ 1) ³ .		
Find the	value of $(\alpha^2 + 1)$	$(\beta^2 + 1)^3 + (\gamma^2 - 1)^3 + $	+ 1) ³ .		
Find the	value of $(\alpha^2 + 1)$	$(\beta^2 + 1)^3 + (\gamma^2 - 1)^3 + $	+1)3.		
Find the	value of $(\alpha^2 + 1)$	$(\beta^2 + 1)^3 + (\gamma^2 - 1)^3 + $	+ 1) ³ .		
Find the	value of $(\alpha^2 + 1)$	$(\beta^2 + 1)^3 + (\gamma^2 - 1)^3 + $	+ 1) ³ .		
Find the	value of $(\alpha^2 + 1)$	$(\beta^2 + 1)^3 + (\gamma^2 - 1)^3 + $	+1)3.		
Find the	value of $(\alpha^2 + 1)$	$\left(\beta^{2}+1\right)^{3}+\left(\gamma^{2}+1\right)^$	+1)3.		
Find the	value of $(\alpha^2 + 1)$	$(\beta^2 + 1)^3 + (\gamma^2 - 1)^3 + $	+1)3.		
Find the	value of $(\alpha^2 + 1)$	$(\beta^2 + 1)^3 + (\gamma^2 - 1)^3 + $	+ 1) ³ .		
Find the	value of $(\alpha^2 + 1)$	$(\beta^2 + 1)^3 + (\gamma^2 - 1)^3 + $	+ 1) ³ .		
Find the	value of $(\alpha^2 + 1)$	$(\beta^2 + 1)^3 + (\gamma^2 - 1)^3 + $	+ 1) ³ .		
Find the	value of $(\alpha^2 + 1)$	$(\beta^2 + 1)^3 + (\gamma^2 - 1)^3 + $	+1)3.		
Find the	value of $(\alpha^2 + 1)$	$(\beta^2 + 1)^3 + (\gamma^2 - 1)^3 + $	+ 1) ³ .		
Find the	value of $(\alpha^2 + 1)$	$(\beta^2 + 1)^3 + (\gamma^2 - 1)^3 + $	+ 1) ³ .		
Find the	value of $(\alpha^2 + 1)$	$(\beta^2 + 1)^3 + (\gamma^2 - 1)^3 + $	+1)3.		

19 - (9231/11_Winter_2024_Q3) **-** *Roots Of Polynomial Equations*

The quartic equation $x^4 + 2x^3 - 1 = 0$ has roots $\alpha, \beta, \gamma, \delta$.

(a) Find a quartic equation whose roots are α^4 , β^4 , γ^4 , δ^4 and state the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.

[5]

- **(b)** Find the value of $\alpha^5 + \beta^5 + \gamma^5 + \delta^5$. [3]
- (c) Find the value of $\alpha^8 + \beta^8 + \gamma^8 + \delta^8$.

[2]

20 - (9231/12_Winter_2024_Q3) - Roots Of Polynomial Equations

It is given that

$$\alpha + \beta + \gamma + \delta = 2,$$

$$\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = 3,$$

$$\alpha^3 + \beta^3 + \gamma^3 + \delta^3 = 4.$$

(a) Find the value of $\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$.

[2]

- **(b)** Find the value of $\alpha^2 \beta + \alpha^2 \gamma + \alpha^2 \delta + \beta^2 \alpha + \beta^2 \gamma + \beta^2 \delta + \gamma^2 \alpha + \gamma^2 \beta + \gamma^2 \delta + \delta^2 \alpha + \delta^2 \beta + \delta^2 \gamma$. [3]
- (c) It is given that α , β , γ , δ are the roots of the equation

$$6x^4 - 12x^3 + 3x^2 + 2x + 6 = 0$$
.

(i) Find the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.

[3]

(ii) Find the value of $\alpha^5 + \beta^5 + \gamma^5 + \delta^5$.

[2]

21 - (9231/21_Winter_2024_Q4) - Matrices, Roots Of Polynomial Equations

The matrix A is given by

$$\mathbf{A} = \begin{pmatrix} -11 & 1 & 8 \\ 0 & -2 & 0 \\ -16 & 1 & 13 \end{pmatrix}.$$

- (a) Show that $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ is an eigenvector of **A** and state the corresponding eigenvalue. [2]
- (b) Show that the characteristic equation of **A** is $\lambda^3 19\lambda 30 = 0$ and hence find the other eigenvalues of **A**.
- (c) Use the characteristic equation of A to find A^{-1} .

[4]

22 - (9231/22_Winter_2024_Q4) - Complex Numbers, Roots Of Polynomial Equations

(a) Use de Moivre's theorem to show that

$$\cot 6\theta = \frac{\cot^6 \theta - 15\cot^4 \theta + 15\cot^2 \theta - 1}{6\cot^5 \theta - 20\cot^3 \theta + 6\cot \theta}.$$
 [6]

(b) Hence obtain the roots of the equation

$$x^{6} - 6x^{5} - 15x^{4} + 20x^{3} + 15x^{2} - 6x - 1 = 0$$

in the form $\cot(q\pi)$, where q is a rational number.

[4]

23 - (9231/23_Winter_2024_Q1) - Roots Of Polynomial Equations

Find the set of values of k for which the system of equations

$$x + 5y + 6z = 1$$
,

$$kx + 2y + 2z = 2,$$

$$-3x + 4y + 8z = 3$$
,

has a unique solution and interpret this situation geometrically.

[4]

1 - (9231/11_Summer_2020_Q1) - Rational Functions And Graphs

Let *a* be a positive constant.

- (a) Sketch the curve with equation $y = \frac{ax}{x+7}$. [2]
- **(b)** Sketch the curve with equation $y = \left| \frac{ax}{x+7} \right|$ and find the set of values of x for which $\left| \frac{ax}{x+7} \right| > \frac{a}{2}$.

	curve C has equation $y = \frac{x^2}{2x+1}$.
)	Find the equations of the asymptotes of <i>C</i> .
)	Find the coordinates of the stationary points on <i>C</i> .
)	Find the coordinates of the stationary points on <i>C</i> .
)	Find the coordinates of the stationary points on C.
)	Find the coordinates of the stationary points on C.
)	
)	
)	
)	
)	
)	
)	
)	

A-Level Cambridge	FURTHER MATHEMATICS - P1, P2	CH2 - Rational functions and graphs
(c) Sketch C.		[3]
3 - (9231/13_Summer_2020_Q6) - Rational Functions An		
The curve C has equation $y = \frac{10 + x - 2}{2x - 3}$	<u> </u>	
(a) Find the equations of the asymptote	es of C.	[3]
(b) Show that <i>C</i> has no turning points.		[3]
· ·	J	
(c) Sketch C, stating the coordinates of	f the intersections with the axes.	[3]

2020 - 2024 36 Powered By: www.exam-mate.com

(d) Sketch the curve with equation $y = \left| \frac{10 + x - 2x^2}{2x - 3} \right|$ and find in exact form the set of values of x for which $\left| \frac{10 + x - 2x^2}{2x - 3} \right| < 4$. [6]

	Find the equations of the asymptotes of C .
	. 0.•
b)	Show that there is no point on C for which $1 < y < 5$.

[3]

(c) Find the coordinates of the intersections of C with the axes, and sketch C.

(d) Sketch the curve with equation $y = \left| \frac{x^2 + x - 1}{x - 1} \right|$.

[2]

5 - (9231/12_Winter_2020_Q6) **-** *Rational Functions And Graphs*

Let *a* be a positive constant.

(a) The curve C_1 has equation $y = \frac{x-a}{x-2a}$

[2]

[3]

Sketch C_1 .

The curve C_2 has equation $y = \left(\frac{x-a}{x-2a}\right)^2$. The curve C_3 has equation $y = \left|\frac{x-a}{x-2a}\right|$.

(b) (i) Find the coordinates of any stationary points of C_2 .

(ii)

2020 - 2024

Find also the coordinates of any points of intersection of ${\cal C}_2$ and ${\cal C}_3$.	[3]
	••••
	.).

(c) Sketch C_2 and C_3 on a single diagram, clearly identifying each curve. Hence find the set of values of x for which $\left(\frac{x-a}{x-2a}\right)^2 \le \left|\frac{x-a}{x-2a}\right|$. [5]

/11_Summer_2021_Q7) = Rational Functions And Graphs	
rve C has equation $y = \frac{x^2 + x + 9}{x + 1}$.	
and the equations of the asymptotes of C .	[3]
Find the coordinates of the stationary points on C .	[4]
	[4]
	[4]
	[4]
Find the coordinates of the stationary points on <i>C</i> .	
Find the coordinates of the stationary points on <i>C</i> .	
Find the coordinates of the stationary points on <i>C</i> .	
Find the coordinates of the stationary points on <i>C</i> .	
Find the coordinates of the stationary points on C.	
Find the coordinates of the stationary points on <i>C</i> .	
Find the coordinates of the stationary points on C.	
Find the coordinates of the stationary points on <i>C</i> .	
Find the coordinates of the stationary points on C.	
Find the coordinates of the stationary points on C.	
find the coordinates of the stationary points on <i>C</i> .	

(c) Sketch C, stating the coordinates of any intersections with the axes.

[3]

(d) Sketch the curve with equation y =and find the set of values of x for which [5]

 $2|x^2+x+9| > 13|x+1|$

The curve C has equation $y = \frac{x^2 - x - 3}{1 + x - x^2}$.			
Find the equations of the asymptotes of C .			[2]
Find the coordinates of any stationary poin	its on C .		[3]
		V	
	A)		
	O		

(c) Sketch C, stating the coordinates of the intersections with the axes.

[3]

(d) Sketch the curve with equation $y = \left| \frac{x^2 - x - 3}{1 + x - x^2} \right|$ and find in exact form the set of values of x for which $\left| \frac{x^2 - x - 3}{1 + x - x^2} \right| < 3$. [6]

2020 - 2024 45 Powered By : www.exam-mate.com

he	curve C has equation $y = \frac{4x+5}{4-4x^2}$.	
a)	Find the equations of the asymptotes of C .	[2]
		0.
(b)	Find the coordinates of any stationary points on C .	[4]

(c) Sketch C, stating the coordinates of the intersections with the axes.

[3]

(d) Sketch the curve with equation $y = \left| \frac{4x+5}{4-4x^2} \right|$ and find in exact form the set of values of x for which $4|4x+5| > 5|4-4x^2|$. [6]

2020 - 2024 47 Powered By : www.exam-mate.com

	urve C has equation $y = \frac{x^2}{x-3}$.	
I	Find the equations of the asymptotes of C .	[3]
•		
		F 4 7
	Show that there is no point on C for which $0 < y < 12$.	[4]
		•••••
	0.5	
		•••••
		•••••

(c) Sketch C.

[2]

(d) (i) Sketch the graphs of $y = \left| \frac{x^2}{x-3} \right|$ and y = |x| - 3 on a single diagram, stating the coordinates of the intersections with the axes. [4]

(ii) Use your sketch to find the set of values of c for which $\left| \frac{x^2}{x-3} \right| \le |x| + c$ has no solution. [1]

2020 - 2024 49

	e curve C has equation $y = \frac{2x^2 - x - 1}{x^2 + x + 1}$.
(a)	Show that C has no vertical asymptotes and state the equation of the horizontal asymptote of C [3]
(b)	Find the coordinates of the stationary points on C .

(c) Sketch C, stating the coordinates of the intersections with the axes.

[3]

- VIII
- (d) Sketch the curve with equation $y = \left| \frac{2x^2 x 1}{x^2 + x + 1} \right|$ and state the set of values of k for which $\left| \frac{2x^2 x 1}{x^2 + x + 1} \right| = k$ has 4 distinct real solutions. [2]
- 11 (9231/13_Summer_2022_Q1) Rational Functions And Graphs
 - (a) Sketch the curve with equation $y = \frac{x+1}{x-1}$

[2]

(b) Sketch the curve with equation $y = \frac{|x|+1}{|x|-1}$ and find the set of values of x for which $\frac{|x|+1}{|x|-1} < -2$. [4]

2020 - 2024 51 Powered By: www.exam-mate.com

urve C has equation $y = \frac{ax^2 + x - 1}{x - 1}$, where a is a positive constant.	
Find the equations of the asymptotes of C .	[3
	•••••
Show that there is no point on C for which $1 < y < 1 + 4a$.	[4
Show that there is no point on C for which $1 < y < 1 + 4a$.	[4
Show that there is no point on C for which $1 < y < 1 + 4a$.	[4
Show that there is no point on C for which $1 < y < 1 + 4a$.	[4
Show that there is no point on C for which $1 < y < 1 + 4a$.	[4
Show that there is no point on C for which $1 < y < 1 + 4a$.	[4
Show that there is no point on C for which $1 < y < 1 + 4a$.	[4
Show that there is no point on C for which $1 < y < 1 + 4a$.	[4
Show that there is no point on C for which $1 < y < 1 + 4a$.	[4
Show that there is no point on C for which $1 < y < 1 + 4a$.	[4
Show that there is no point on C for which $1 < y < 1 + 4a$.	[4
Show that there is no point on C for which $1 < y < 1 + 4a$.	[4
Show that there is no point on C for which $1 < y < 1 + 4a$.	[4
Show that there is no point on C for which $1 < y < 1 + 4a$.	[4
Show that there is no point on C for which $1 \le y \le 1 + 4a$.	[4

A-Level Cambridge	FURTHER MATHEMATICS - P1, P2	CH2 - Rational functions and graphs
(c) Sketch C. You do not need to find	the coordinates of the intersections with the axe	es. [3]
		CO
		J.°

2020 - 2024 53 Powered By: www.exam-mate.com

Г	nd the equations of the asymptotes of C .		[3]
• •			
			•••••
		v () °	,
• •			*************
			•••••
F	nd the coordinates of the stationary points on C .		[4]
• •			

(c) Sketch C.

[3]

(d) Sketch the curve with equation $y = \left| \frac{5x^2}{5x - 2} \right|$ and find in exact form the set of values of x for which $\left| \frac{5x^2}{5x - 2} \right| < 2$.

- (9	231/12_Winter_2022_Q7) - Rational Functions And Graphs	
The	curve C has equation $y = \frac{x^2 - x}{x + 1}$.	
	Find the equations of the asymptotes of C .	[3]
		•••••
(b)	Find the exact coordinates of the stationary points on <i>C</i> .	[4]
		•••••
		•••••
		•••••

A-Level Cambridge

(c) Sketch C, stating the coordinates of any intersections with the axes.

[3]

(d) Sketch the curve with equation $y = \left| \frac{x^2 - x}{x + 1} \right|$ and find in exact form the set of values of x for which

$$\left|\frac{x^2 - x}{x + 1}\right| < 6. \tag{5}$$

ANSWERS

2020 - 2024 426

1 - (9231/11_Summer_2020_Q2) - Roots Of Polynomial Equations

(a)	$y = x^2$	B1
	$6y^{\frac{1}{2}} + py - 3y^{\frac{1}{2}} - 5 = 0 \Rightarrow y^{\frac{1}{2}} (6y - 3) = -py + 5$ $y(6y - 3)^{2} = (-py + 5)^{2} \Rightarrow y(36y^{2} - 36y + 9) = p^{2}y^{2} - 10py + 25$	M1
	$36y^3 - (p^2 + 36)y^2 + (10p + 9)y - 25 = 0$	A1
		3
(b)(i)	$\alpha^2 + \beta^2 + \gamma^2 = \frac{p^2 + 36}{36}$	B1
	$\frac{p^2 + 36}{36} = -\frac{2p}{6} \Rightarrow p^2 + 12p + 36 = 0$	M1
	p = -6	A1
		3
(b)(ii)	$6(\alpha^3 + \beta^3 + \gamma^3) = 6(\alpha^2 + \beta^2 + \gamma^2) + 3(\alpha + \beta + \gamma) + 15$	M1
	$\alpha^3 + \beta^3 + \gamma^3 = 5$	A1
	X	2

2 - (9231/13_Summer_2020_Q1) - Roots Of Polynomial Equations

(a)	y = x ⁻¹	B1
	$7y^{-3} + 3y^{-2} + 5y^{-1} + 1 = 0 \Rightarrow y^3 + 5y^2 + 3y + 7 = 0$	M1 A1
		3
(b)	$\alpha^{-2} + \beta^{-2} + \gamma^{-2} = (-5)^2 - 2(3) = 19$	M1 A1
(c)	$\alpha^{-3} + \beta^{-3} + \gamma^{-3} = -5(19) - 3(-5) - 21 = -101$	M1 A1
		4

3 - (9231/11_Winter_2020_Q3) - Roots Of Polynomial Equations, Matrices

(a)	$y = x^3 \Rightarrow x = y^{\frac{1}{3}}$	B1	Substitutes.
	$y + cy^{\frac{1}{2}} + 1 = 0 \Rightarrow -c^3y = (y+1)^3 = y^3 + 3y^2 + 3y + 1$	M1	Correct attempt to eliminate cube root.
	$y^3 + 3y^2 + (3 + c^3)y + 1 = 0$	A1	
		3	
(b)	$\alpha^3 + \beta^3 + \gamma^3 = -3 \alpha^3 \beta^3 + \beta^3 \gamma^3 + \gamma^3 \alpha^3 = 3 + c^3$	B1 FT	Using their answer to (a).
	$\alpha^6 + \beta^6 + \gamma^6 = (-3)^2 - 2(3+c^3)$	M1	$\alpha^{6} + \beta^{6} + \gamma^{6} = (\alpha^{3} + \beta^{3} + \gamma^{3})^{2} - 2(\alpha^{3}\beta^{3} + \beta^{3}\gamma^{3} + \gamma^{3}\alpha^{3})$
	$=3-2c^3$	A1	AG
		3	
(c)	$\alpha^3 \beta^3 \gamma^3 = -1$	B1	If using their answer to (a) FT
	$\begin{vmatrix} 1 & \alpha^3 & \beta^3 \\ \alpha^3 & 1 & \gamma^3 \\ \beta^3 & \gamma^3 & 1 \end{vmatrix} = 1 - (\alpha^6 + \beta^6 + \gamma^6) + 2\alpha^3 \beta^3 \gamma^3 = 2c^3 - 4$	M1 A1	Evaluates determinant.
	$2c^3 - 4 = 0$	M1	Sets determinant equal to zero.
	$c = \sqrt[4]{2}$	A1	
		5	

4 - (9231/12_Winter_2020_Q1) - Roots Of Polynomial Equations

(a)	d = 1	Bi			
		1			
(b)	$y = x + 1 \Rightarrow x = y - 1$	B1	Uses correct substitution.		
	$y^3 + (b-3)y^2 + (c-2b+3)y + b - c = 0$	M1 A1	Substitutes and expands.		
	Alternative method for question 1(b)				
	$(\alpha+1)(\beta+1) + (\alpha+1)(\gamma+1) + (\beta+1)(\gamma+1) = c - 2b + 3$	B1			
	$(\alpha+1+\beta+1+\gamma+1) = 3-b, (\alpha+1)(\beta+1)(\gamma+1) = c-b$	M1	Using these relationships.		
	$y^3 + (b-3)y^2 + (c-2b+3)y + b - c = 0$	A1			
		3			
(c)	$\beta+1=-(b-3)$	B1	Uses sum of roots.		
	$-(\alpha+1)(\alpha+1) = c - 2b + 3$	B1	Uses sum of products in pairs.		
	$-(\alpha+1)(\beta+1)(\alpha+1) = -(b-c)$	M1	Applies product of roots.		
	$\Rightarrow (c-2b+3)(b-3) = b-c$	A1	AG		
		4			

5 - (9231/11_Summer_2021_Q3) - Roots Of Polynomial Equations

$y = x^3$	B1	Correct substitution.
$y^{\frac{4}{7}} - 2y - 1 = 0 \Rightarrow y^4 = (2y + 1)^3 = 8y^3 + 12y^2 + 6y + 1$	M1	Obtains an equation not involving radicals.
$y^4 - 8y^3 - 12y^2 - 6y - 1 = 0$	A1	
$\alpha^3 + \beta^3 + \gamma^3 + \delta^3 = 8$	B1 FT	
	4	

FURTHER MATHEMATICS - P1, P2

(b)	$\frac{1}{\alpha^3} + \frac{1}{\beta^3} + \frac{1}{\gamma^3} + \frac{1}{\delta^3} = \frac{\alpha^3 \beta^3 \delta^3 + \alpha^3 \beta^3 \gamma^3 + \beta^3 \gamma^3 \delta^3 + \alpha^3 \gamma^3 \delta^3}{\alpha^3 \beta^3 \gamma^3 \delta^3} = \frac{6}{-1}$	M1 A1 FT	Relates $\frac{1}{\alpha^3} + \frac{1}{\beta^3} + \frac{1}{\gamma^3} + \frac{1}{\delta^3}$ to coefficients.
	-6	A1	
		3	
(c)	$\alpha^4 + \beta^4 + \gamma^4 + \delta^4 = 2(\alpha^3 + \beta^3 + \gamma^3 + \delta^3) + 4$	М1	Uses original equation.
	= 20	A1	
		2	

6 - (9231/13_Summer_2021_Q2) - Roots Of Polynomial Equations

(a)	$S_1 = 2$	B1	
	$S_2 = S_1^2 - 2(0)$	M1	Uses formula for sum of squares.
	= 4	A1	Correct answer implies M1A1.
		3	
(b)(i)	$S_{n+3} = 2S_{n+2} - \frac{3}{2}S_n$	В1	CAO or as a single fraction.
		1	VVI
(b)(ii)	$S_4 = 2S_3 - \frac{3}{2}S_1 = 2(2S_2 - \frac{3}{2}S_0) - \frac{3}{2}S_1$	M1	Uses their recursive formula from part (i) to find $S_4 \left[S_3 = \frac{7}{2} \right]$.
	= 4	A1	
		2	
(c)	x = 2 - y	B1	SOI
	$2(2-y)^3 - 4(2-y)^2 + 3 = 0$	M1	Makes their substitution.
	$2y^3 - 8y^2 + 8y - 3 = 0$	A1	OE but must be an equation.
		3	
(d)	$\begin{bmatrix} \frac{8}{2} \\ \frac{-3}{2} \end{bmatrix}$ OR On we 25 95 195 25 = 0 with substitution of their values	MI	Uses $\frac{1}{\alpha'} + \frac{1}{\beta'} + \frac{1}{\gamma'} = \frac{\alpha'\beta' + \beta'\gamma' + \gamma'\alpha'}{\alpha'\beta'\gamma'}$.
	Or use $2S_2 - 8S_1 + 8S_0 - 3S_{-1} = 0$ with substitution of their values		
	$=\frac{8}{3}$	A1 FT	FT from 2(c).
		2	

7 - (9231/11_Winter_2021_Q1) - *Roots Of Polynomial Equations*

$b = -(\alpha + \beta + \gamma) = -3$	B1	
$5 = 3^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$	M1 A1	Uses formula for sum of squares.
c = 2	A1	
6 - 3(5) + 2(3) + 3d = 0	MI	Uses original equation or formula for sum of cubes
[Equation is $x^3 - 3x^2 + 2x + 1 = 0$] $d = 1$	Al	
	6	

2020 - 2024 429 Powered By: www.exam-mate.com