## IB Diploma

## **CHEMISTRY**

## SL

Paper 1 2017 — 2023

| Chapter 1  | Stoichiometric Relationship   | Page 1   |
|------------|-------------------------------|----------|
| Chapter 2  | Atomic Structure              | Page 25  |
| Chapter 3  | Periodicity                   | Page 38  |
| Chapter 4  | Chemical Bonding & Structure  | Page 46  |
| Chapter 5  | Energetics / Thermochemistry  | Page 66  |
| Chapter 6  | Chemical Kinetics             | Page 89  |
| Chapter 7  | Equilibrium                   | Page 105 |
| Chapter 8  | Acids & Bases                 | Page 113 |
| Chapter 9  | Redox Processes               | Page 123 |
| Chapter 10 | Organic Chemistry             | Page 139 |
| Chapter 11 | Measurement & Data Processing | Page 163 |
|            | Answers                       | Page 181 |
|            |                               |          |

1 - (CHEMI/11\_SL\_Summer\_2017\_Q1) - Stoichiometric Relationship

Which compound has the greatest percentage by mass of nitrogen atoms?

- A. N<sub>2</sub>H<sub>4</sub>
- B. NH<sub>3</sub>
- C. N<sub>2</sub>O<sub>4</sub>
- D. NaNO<sub>3</sub>
- 2 (CHEMI/11\_SL\_Summer\_2017\_Q2) Stoichiometric Relationship

Which statements about mixtures are correct?

- I. The components may be elements or compounds.
- II. All components must be in the same phase.
- III. The components retain their individual properties.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- **3** (CHEMI/11\_SL\_Summer\_2017\_Q3) Stoichiometric Relationship

 $5.0\,\mathrm{cm^3}$  of  $2.00\,\mathrm{mol}$  dm<sup>-3</sup> sodium carbonate solution,  $\mathrm{Na_2CO_3(aq)}$ , was added to a volumetric flask and the volume was made up to  $500\,\mathrm{cm^3}$  with water. What is the concentration, in mol dm<sup>-3</sup>, of the solution?

- A. 0.0050
- B. 0.0040
- C. 0.020
- D. 0.010

**4** - (CHEMI/11\_SL\_Summer\_2017\_Q4) - Stoichiometric Relationship

What is the expression for the volume of hydrogen gas, in dm³, produced at STP when 0.30g of magnesium reacts with excess hydrochloric acid solution?

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

Molar volume of an ideal gas at  $STP = 22.7 \, dm^3 \, mol^{-1}$ 

- A.  $\frac{0.30 \times 2 \times 22.7}{24.31}$
- B.  $\frac{0.30 \times 22.7}{24.31}$
- C.  $\frac{0.30 \times 24.31}{22.7}$
- D.  $\frac{0.30 \times 22.7}{24.31 \times 2}$

**5** - (CHEMI/11\_SL\_Summer\_2017\_Q29) - Stoichiometric Relationship

What is the density, in g cm<sup>-3</sup>, of a 34.79g sample with a volume of 12.5 cm<sup>3</sup>?

- A. 0.359
- B. 0.36
- C. 2.783
- D. 2.78

**6** - (CHEMI/12\_SL\_Summer\_2017\_Q1) - Stoichiometric Relationship

What is the sum of the coefficients when the equation is balanced with whole numbers?

$$\_C_8H_{18}(g) + \_O_2(g) \rightarrow \_CO(g) + \_H_2O(l)$$

- A. 26.5
- B. 30
- C. 53
- D. 61

7 - (CHEMI/12\_SL\_Summer\_2017\_Q2) - Stoichiometric Relationship

How many moles of oxygen atoms are there in 0.500 mol of hydrated iron(II) ammonium sulfate,  $(NH_4)_2Fe$  (SO<sub>4</sub>)<sub>2</sub>•6H<sub>2</sub>O(s)?

- A. 4.00
- B. 7.00
- C. 8.00
- D. 14.00

**8** - (CHEMI/12\_SL\_Summer\_2017\_Q3) - Stoichiometric Relationship

What is the maximum volume, in dm<sup>3</sup>, of  $CO_2(g)$  produced when 1.00 g of  $CaCO_3(s)$  reacts with 20.0 cm<sup>3</sup> of 2.00 mol dm<sup>-3</sup> HCl (aq)?

$$\mathsf{CaCO_3}(\mathsf{s}) + 2\mathsf{HCl}\,(\mathsf{aq}) \to \mathsf{CaCl}_2(\mathsf{aq}) + \mathsf{H}_2\mathsf{O}\,(\mathsf{l}) + \mathsf{CO}_2(\mathsf{g})$$

Molar volume of gas =  $22.7 \,\text{dm}^3 \,\text{mol}^{-1}$ ;  $M_r (\text{CaCO}_3) = 100.00$ 

A. 
$$\frac{1}{2} \times \frac{20.0 \times 2.00}{1000} \times 22.7$$

B. 
$$\frac{20.0 \times 2.00}{1000} \times 22.7$$

C. 
$$\frac{1.00}{100.00} \times 22.7$$

D. 
$$\frac{1.00}{100.00} \times 2 \times 22.7$$

 $\textbf{9} \quad \textbf{-} \; (\text{CHEMI/12\_SL\_Summer\_2017\_Q4}) \; \textbf{-} \; \textit{Stoichiometric Relationship}$ 

Which factors affect the molar volume of an ideal gas?

- I. Pressure
- II. Temperature
- III. Empirical formula
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

10 - (CHEMI/10\_SL\_Winter\_2017\_Q1) - Stoichiometric Relationship

How many atoms of nitrogen are there in 0.50 mol of (NH<sub>4</sub>)<sub>2</sub>CO<sub>3</sub>?

- A. 1
- B. 2
- C.  $3.01 \times 10^{23}$
- D.  $6.02 \times 10^{23}$
- 11 (CHEMI/10\_SL\_Winter\_2017\_Q2) Stoichiometric Relationship

What is the value of x when 32.2g of  $Na_2SO_4 \cdot xH_2O$  are heated leaving 14.2g of anhydrous  $Na_2SO_4$ ?  $M_r(H_2O) = 18$ ;  $M_r(Na_2SO_4) = 142$ .

$$Na_2SO_4 \cdot xH_2O(s) \rightarrow Na_2SO_4(s) + xH_2O(g)$$

- A. 0.1
- B. 1
- C. 5
- D. 10
- 12 (CHEMI/10\_SL\_Winter\_2017\_Q3) Stoichiometric Relationship

How many grams of sodium azide, NaN<sub>3</sub>, are needed to produce 68.1 dm<sup>3</sup> of N<sub>2</sub>(g) at STP? Molar volume at STP =  $22.7 \, \text{dm}^3 \, \text{mol}^{-1}$ ;  $M_r(\text{NaN}_3) = 65.0$ 

$$2NaN_3(s) \rightarrow 3N_2(g) + 2Na(s)$$

- A. 32.5
- B. 65.0
- C. 130.0
- D. 195.0
- 13 (CHEMI/10\_SL\_Winter\_2017\_Q4) Stoichiometric Relationship

What is the sum of the coefficients when the following equation is balanced using the smallest whole numbers?

$$\underline{\hspace{1cm}} C_6H_{12}O_6(aq) \rightarrow \underline{\hspace{1cm}} C_2H_5OH(aq) + \underline{\hspace{1cm}} CO_2(g)$$

- A. 4
- B. 5
- C. 9
- D. 10

## ANSWERS

1 - (CHEMI/11\_SL\_Summer\_2017\_Q1) - Stoichiometric Relationship

Α

2 - (CHEMI/11\_SL\_Summer\_2017\_Q2) - Stoichiometric Relationship

В

**3** - (CHEMI/11\_SL\_Summer\_2017\_Q3) - Stoichiometric Relationship

 $\mathbf{C}$ 

**4** - (CHEMI/11\_SL\_Summer\_2017\_Q4) - Stoichiometric Relationship

В

**5** - (CHEMI/11\_SL\_Summer\_2017\_Q29) - Stoichiometric Relationship

D

**6** - (CHEMI/12\_SL\_Summer\_2017\_Q1) - Stoichiometric Relationship

C

7 - (CHEMI/12\_SL\_Summer\_2017\_Q2) - Stoichiometric Relationship

В

**8** - (CHEMI/12\_SL\_Summer\_2017\_Q3) - Stoichiometric Relationship

 $\mathbf{C}$ 

9 - (CHEMI/12\_SL\_Summer\_2017\_Q4) - Stoichiometric Relationship

A

10 - (CHEMI/10\_SL\_Winter\_2017\_Q1) - Stoichiometric Relationship

D