A LEVEL Cambridge Topical Past Papers

MECHANICS

2017 — 2023

Chapter 1	FORCES & IQUILIBRIUM	Page 1
Chapter 2	KINEMATICS OF MOTION IN A STRAIGHT LINE	Page 58
Chapter 3	NEWTON'S LAWS OF MOTION	Page 141
Chapter 4	ENERGY ,WORK & POWER	Page 242
Chapter 5	GENERAL MOTION IN STRAIGHT LINE	Page 324
Chapter 6	MOMENTUM	Page 361
	ANSWERS	Page 384

TOPICS	P4
FORCES & IQUILIBRIUM	52
KINEMATICS OF MOTION IN A STRAIGHT LINE	61
NEWTON'S LAWS OF MOTION	77
ENERGY, WORK & POWER	62
GENERAL MOTION IN STRAIGHT LINE	27
MOMENTUM	20

PURE MATHEMATICS P4 9709

TOPICAL PAST PAPER WORKSHEETS

2017 - 2023 | Questions + Mark scheme

AVAILABLE PAPERS

P1

Р3

P4

P5

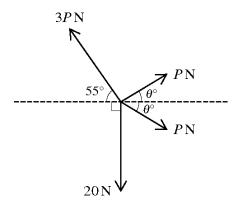
P6

490 Questions

432 Questions

299 Questions

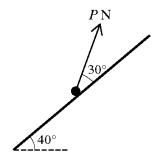
287 Questions


257 Questions

www.exam-mate.com

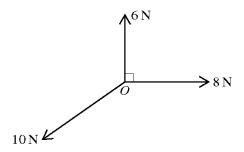
1	- (97	09/41_Summer_2017_Q2) = Forces & Equilibrium
	plan	article of mass $0.8 \mathrm{kg}$ is projected with a speed of $12 \mathrm{ms^{-1}}$ up a line of greatest slope of a rough e inclined at an angle of 10° to the horizontal. The coefficient of friction between the particle and plane is 0.4 .
	(i)	Find the acceleration of the particle. [4]
	(ii)	Find the distance the particle moves up the plane before coming to rest. [2]

2017 - 2023 1 Powered By: www.exam-mate.com


2 - (9709/43_Summer_2017_Q2) **-** *Forces & Equilibrium*

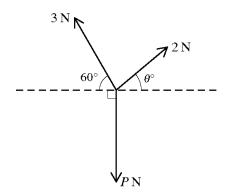
The four coplanar forces shown in the diagram are in equilibrium. Find the values of P and θ . [5]

2017 - 2023 Powered By : www.exam-mate.com


3 - (9709/42_Summer_2017_Q5) **-** Forces & Equilibrium

A particle of mass $0.12 \,\mathrm{kg}$ is placed on a plane which is inclined at an angle of 40° to the horizontal. The particle is kept in equilibrium by a force of magnitude $P\,\mathrm{N}$ acting up the plane at an angle of 30° above a line of greatest slope, as shown in the diagram. The coefficient of friction between the particle and the plane is 0.32. Find the set of possible values of P.

2017 - 2023 Powered By: www.exam-mate.com


4 - (9709/41_Summer_2018_Q2) **-** *Forces & Equilibrium*

The diagram shows three coplanar forces acting at the point O. The magnitudes of the forces are $6 \, \text{N}$, $8 \, \text{N}$ and $10 \, \text{N}$. The angle between the $6 \, \text{N}$ force and the $8 \, \text{N}$ force is 90° . The forces are in equilibrium. Find the other angles between the forces.

2017 - 2023 4 Powered By: www.exam-mate.com


5 - (9709/42_Summer_2018_Q3) **-** *Forces & Equilibrium*

The three coplanar forces shown in the diagram have magnitudes 3 N, 2 N and P N. Given that the three forces are in equilibrium, find the values of θ and P.

2017 - 2023 5 Powered By: www.exam-mate.com

6 - (9709/43_Summer_2018_Q3) **-** Forces & Equilibrium

Coplanar forces of magnitudes 8 N, 12 N and 18 N act at a point in the directions shown in the diagram. Find the magnitude and direction of the single additional force acting at the same point which will produce equilibrium.

2017 - 2023 6 Powered By: www.exam-mate.com

ANSWERS

2017 - 2023 384

A-Level Cambridge

(i)	$R = 0.8g \cos 10 = 7.88$	B1
	$F = 0.4 \times 8 \cos 10 = 3.15$	M1
	$-8\sin 10 - 3.2\cos 10 = 0.8a$	M1
	$a = -5.68 \text{ ms}^{-2}$	A1
	Total:	4
(ii)	$0 = 12^2 - 2 \times 5.68 \times s$	M1
	$s = 144/(2 \times 5.68) = 12.7 \mathrm{m}$	A1
	Total:	2

2 - (9709/43_Summer_2017_Q2) - Forces & Equilibrium

EITHER: $3P \sin 55 + P \sin \theta = 20 + P \sin \theta$ or $3P \sin 55 = 20$	(M1
P = 8.14	A1
$3P\cos 55 = 2P\cos \theta$	M1
$\cos \theta = 1.5 \cos 55 \rightarrow \theta = \dots$	M1
$\theta = 30.6$	A1)
$\frac{OR:}{\frac{3P}{\sin 90}} = \frac{20}{\sin 125}$	(M1
P = 8.14	A1
$\frac{3P}{\sin 90} = \frac{2P\cos\theta}{\sin 145}$	M1
$\cos \theta = 1.5 \sin 145 \rightarrow \theta = \dots$	M1
$\theta = 30.6$	A1)
Total:	5

2017 - 2023 385 Powered By: www.exam-mate.com

3 - (9709/42_Summer_2017_Q5) **-** Forces & Equilibrium

		M1
$R + P \sin 30 = 0.12g \cos 40$		A1
F = 0.32R		M1
$[P_{\min}\cos 30 + F = 0.12g\sin 40]$		M1
$[P_{\text{max}}\cos 30 - F = 0.12g\sin 40]$		M1
[$P \cos 30 = 0.12g \sin 40$ $\pm 0.32 (0.12g \cos 40 - P \sin 30)$] OR [$P \cos 30 \pm 0.32R = 0.12g \sin 40$ $R + P \sin 30 = 0.12g \cos 40$] Must reach $P =$ in either method		M1
$P_{\text{max}} = 1.04 P_{\text{min}} = 0.676$		A1
$0.676 \le P \le 1.04$		A1
	Total:	8

4 - (9709/41_Summer_2018_Q2) **-** Forces & Equilibrium

	$[10\cos\alpha = 8 \text{ or } 10\cos\beta = 6]$	M1	Introduce α or β , an angle between the 10N force and the vertical or horizontal and attempt to resolve forces		
	$\alpha = 36.9 \text{ or } \beta = 53.1$	A1			
	Angle between 6N and 10N is 126.9	B1			
	Angle between 8N and 10N is 143.1	B1			
		4			
	Alternative scheme for Question 2				
	$\frac{10}{\sin 90} = \frac{6}{\sin \gamma} = \frac{8}{\sin S}$	M1	Attempt to use Lami's theorem γ (8 and 10), δ (6 and 10)		
	All correct	A1			
	Angle between 8N and 10N is $\gamma = 143.1$	B1			
	Angle between 6N and 10N is $\delta = 126.9$	B1			

2017 - 2023 386 Powered By : www.exam-mate.com

5 - (9709/42_Summer_2018_Q3) **-** *Forces & Equilibrium*

$[3\cos 60 = 2\cos \theta]$	M1	Attempt to resolve forces horizontally (2 terms)		
$\theta = 41.4$	A1			
$[P=3\sin 60+2\sin \theta]$	M1	Attempt to resolve forces vertically (3 terms)		
P = 3.92	A1			
	4			
First alternative method for Q3	•			
$\frac{P}{\sin(120-\theta)} = \frac{2}{\sin 150} = \frac{3}{\sin(90+\theta)}$	M1	Attempt two terms of Lami's equation which can be used to find $\boldsymbol{\theta}$		
$\theta = 41.4$	A1			
	M1	Attempt an equation which can be used to find P		
P = 3.92	A1			
Second alternative method for Q3				
[Triangle with sides 2, 3, P and angles opposite of 30, 90 – θ , 60 + θ] $\frac{P}{\sin(60+\theta)} = \frac{2}{\sin 30} = \frac{3}{\sin(90-\theta)}$	M1	Attempt two terms from the triangle of forces which can be used to find $\boldsymbol{\theta}$		
$\theta = 41.4$	A1	XV		
	M1	Attempt an equation which can be used to find P		
P = 3.92	A1			

6 - (9709/43_Summer_2018_Q3) - Forces & Equilibrium

	M	For resolving forces in any one direction
E.g. $X = 18 + 12\sin 60^{\circ} - 8\sin 30^{\circ}$ $14 + 6\sqrt{3}$	A	One correct equation or expression
E.g. $Y = 8\cos 30^{\circ} + 12\cos 60^{\circ}$ $6 + 4\sqrt{3}$	Al	Second correct equation or expression (X and Y may denote components of resultant of given 3 forces or may be component of the fourth force that would produce equilibrium)
$[(14+6\sqrt{3})^2+(6+4\sqrt{3})^2]$ or $[\tan^{-1}(6+4\sqrt{3})/(14+6\sqrt{3})]$	Mi	Use of Pythagoras or appropriate trig to find magnitude or angle
Magnitude is 27.6 (N)	Al	Not for resultant
Direction is 27.9° below 'negative x-axis'	Al	Not for 27.9° only; direction must be clearly specified
Total:	(5

$\textbf{7} \quad \textbf{-} \ (9709/42_Summer_2018_Q5) \quad \textbf{-} \ \textit{Forces \& Equilibrium, Newton's Laws Of Motion}$

	$R = 20g \cos 60 = 100$	B1	
	$F = \mu \times 20g \cos 60 = 100\mu$	M1	Use $F = \mu R$
		M1	Resolve along plane in either case
/	$(P_{\text{max}} =) 20g \sin 60 + F$	A1	One correct equation
	$(P_{\min} =) 20g \sin 60 - F$	A1	Second correct equation
	$20g\sin 60 + F = 2(20g\sin 60 - F)$	M1	Use of $P_{\text{max}} = 2P_{\text{min}}$ to give four term equation in F or μ or P
	$\mu = \frac{\sqrt{3}}{3} = 0.577$	A1	
		7	
	Iternative solution for final 3 marks if P_{\min} is taken as acting down the plane		
	$P_{\min} = F - 20g \sin 60$	A1	
	$20g \sin 60 + F = 2(F - 20g \sin 60)$	M1	
	$\mu = 3\sqrt{3} = 5.196$	A1	