A LEVEL Cambridge Topical Past Papers

FURTHER STATISTICS

2017—2023

Chapter 18	Further Work On Distributions	Page 1
Chapter 19	Inference Using Normal And T-Distributions	Page 42
Chapter 20	X2 Test	Page 97
Chapter 21	Bivariate Data Simple	Page 131
Chapter 24	Non Parametric Test	Page 151
Chapter 25	Continuous Random Variable	Page 171
Chapter 26	Probability Generating Function	Page 202
	ANSWERS	Page 231

FURTHER MATHEMATICS P4 9231

TOPICAL PAST PAPER WORKSHEETS

2017 - 2023 | Questions + Mark scheme

AVAILABLE PAPERS

P1,2

Р3

P4

395 Questions

179 Questions

164 Questions

www.exam-mate.com

TOPICS	P4
Further Work On Distributions	31
Inference Using Normal And T-Distributions	46
X2 Test	23
Bivariate Data Simple	13
Non Parametric Test	16
Continuous Random Variable	17
Probability Generating Function	18

air die is thrown repeatedly	until a 6 is obtained.	
	obtaining a 6 takes no more than four throws.	[2]
•••••		
		•••••
••••••		
••••••		• • • • • • • • • • • • • • • • • • • •

Find the least integer N	such that the probability of obtaining a 6 before the N th	
Find the least integer N than 0.95.	such that the probability of obtaining a 6 before the N th	throw is more
Find the least integer N than 0.95.	such that the probability of obtaining a 6 before the N th	
Find the least integer N than 0.95.	such that the probability of obtaining a 6 before the Nth	
Find the least integer N than 0.95.	such that the probability of obtaining a 6 before the Nth	
Find the least integer N than 0.95.	such that the probability of obtaining a 6 before the Nth	
Find the least integer N than 0.95.	such that the probability of obtaining a 6 before the Nth	
Find the least integer N than 0.95.	such that the probability of obtaining a 6 before the Nth	
Find the least integer N than 0.95.	such that the probability of obtaining a 6 before the Nth	
Find the least integer N than 0.95.	such that the probability of obtaining a 6 before the Nth	
Find the least integer N than 0.95.	such that the probability of obtaining a 6 before the Nth	
Find the least integer N than 0.95.	such that the probability of obtaining a 6 before the Nth	
Find the least integer N than 0.95.	such that the probability of obtaining a 6 before the Nth	
Find the least integer N than 0.95.	such that the probability of obtaining a 6 before the Nth	
Find the least integer N than 0.95.	such that the probability of obtaining a 6 before the Nth	

2017 - 2023 1 Powered By: www.exam-mate.com

2 - (9231/21_Summer_2017_Q8) - Further Work On Distributions

The continuous random variable X has probability density function f given by

$$\mathbf{f}(x) = \begin{cases} \frac{1}{4}(x-1) & 2 \le x \le 4, \\ 0 & \text{otherwise.} \end{cases}$$

(i)	Find the distribution function of X .	[3]
The	random variable Y is defined by $Y = (X - 1)^3$.	
(ii)	Find the probability density function of Y.	[4]

2017 - 2023 Powered By : www.exam-mate.com

3 - (9231/23_Summer_2017_Q9) **-** Further Work On Distributions

The continuous random	veriable V has	nech ability	donaitza	function f	cirron	h.
The continuous random	variable A has	probability	density	runchon r	given	υy

X has probability density function f given
$$f(x) = \begin{cases} 0 & x < 0, \\ ae^{-x \ln 2} & x \ge 0, \end{cases}$$

where a is a positive constant.

Find the value of a .	[2]
State the value of $E(X)$.	[1]
Find the interquartile range of X .	[4]
	State the value of $\mathrm{E}(X)$.

4 Powered By: www.exam-mate.com

A-Level Cambridge

The variable Y is related to X by $Y = 2^X$.

(iv) Find the probability density function of Y.

[5]

2017 - 2023 5 Powered By: www.exam-mate.com

21_Winter_2017_Q6) = Further Work On Distributions	
	ows taken
Find the mean value of X .	[2]
	••••••
	••••••
Find the probability that exactly 12 throws are required to obtain a pair of sixes.	[2]
	••••••
	•••••
	•••••
Find the much shility that we can thou 12 theory and many indits abtain a main of gives	[2]
	air of fair dice is thrown repeatedly until a pair of sixes is obtained. The number of the moted by the random variable X. Find the mean value of X. Find the probability that exactly 12 throws are required to obtain a pair of sixes. Find the probability that more than 12 throws are required to obtain a pair of sixes.

2017 - 2023 6 Powered By: www.exam-mate.com

5 - (9231/21_Winter_2017_Q7) **-** *Further Work On Distributions*

The random variable X has probability density function f given by

$$\mathbf{f}(x) = \begin{cases} 0.2e^{-0.2x} & x \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

(i)	Find the distribution function	on of X.			[2
					••••••
					•••••
			•••••	••••••	
) <u> </u>
(ii)	Find $P(X > 2)$.			VOJ.	[2
		••••••			••••••
(iii)	Find the median of X .	0,1			[3
	- A V	•••••••	•••••	••••••••••••	••••••

2017 - 2023 7 Powered By: www.exam-mate.com

ANSWERS

2017 - 2023 231

1 - (9231/21_Summer_2017_Q6) - Further Work On Distributions

(i)	$P(X \le 4) = 1 - q^4$	M1
	= 671/1296 or 0.518	A1
	Total:	2
(ii)	$1 - q^{N-1} > 0.95$	M1
	$(5/6)^{N-1} < 0.05, N-1 > \log 0.05 / \log 5/6$	M1
	$N-1 > 16.4[3], N_{\min} = 18$	A1
	Total:	3

2 - (9231/21_Summer_2017_Q8) - Further Work On Distributions

(i)	$F(x) = \int f(x) dx = x^2/8 - x/4 [+ c]$	M1
	$= x^2/8 - x/4 \text{ or } \{(x-1)^2 - 1\}/8 $ (AEF)	A1
	$F(x) = 0 \ (x < 2), F(x) = 1 \ (x > 4)$	A1
	Total:	3
(ii)	EITHER: $G(y) = P(Y < y) = P((X - 1)^{3} < y)$ $= P(X < 1 + y^{1/3}) = F(1 + y^{1/3})$ $= (1 + y^{1/3})^{2}/8 - (1 + y^{1/3})/4 \text{ or } (y^{2/3} - 1)/8$	(M1 A1)
	OR: Use $x = 1 + y^{1/3}$ to find $f(x) = \frac{1}{4} y^{1/3}$ and $dx/dy = \frac{1}{3} y^{-2/3}$	(M1 A1)
	$g(y) = G'(y) = (1/12) y^{-1/3} \text{ or } 1/(12 y^{1/3})$	A1
	for $1 \le y \le 27$ [g(y) = 0 otherwise]	A1
	Total:	4
(iii)	$(m^{2/3} - 1)/8 = \frac{1}{2}$	M1
	$m^{2/3} = 5, m = \sqrt{125 \text{ or } 5\sqrt{5} \text{ or } 11.2}$	M1 A1
	Total:	3

2017 - 2023 Powered By : www.exam-mate.com

3 - (9231/23_Summer_2017_Q9) **-** Further Work On Distributions

(1)	(/1 a) F = x ln 21 %	241 41
(i)	$(a / \ln 2) \left[-e^{-x \ln 2} \right]_0^{\infty} = a / \ln 2 \text{ so } a = \ln 2 \text{ or } 0.693$	M1 A1
	Total:	2
(ii)	$E(X) = 1 / \ln 2 \text{ or } 1.44$	B1
	Total:	1
(iii)	$F(Q) = 1 - e^{-Q \ln 2} = \frac{1}{4} or^{3/4}$	M1
	$Q_1 = (\ln 4/3) / (\ln 2) [= 0.415]$ (AEF)	A1
	$Q_3 = (\ln 4) / (\ln 2) [= 2]$ (AEF)	A1
	$Q_3 - Q_1 = (\ln 3) / (\ln 2) = 1.58 [or 1.59]$	A1
	Total:	4
(iv)	EITHER: $G(y) = P(Y < y) = P(2^{X} < y)$ $= P(X < (\ln y) / (\ln 2))$ $= F((\ln y) / (\ln 2)) \text{ or } F(\log_2 y)$ (AEF)	(M1 A1
	$= 1 - e^{-\ln y} \text{ or } 1 - 1/y$	A1)
	OR: Use $x = (\ln y) / (\ln 2)$ to find both	(M1
	$f(x) = (\ln 2) e^{-x \ln 2} = (\ln 2) e^{-\ln y} = (1/y) \ln 2$	A1
	and $dx/dy = 1 / (y \ln 2)$	A1)
	$g(y) [= G'(y)] = 1/y^2$	A1
	for $y \ge 1$ [g(y) = 0 otherwise]	A1
	Total:	5

4 - (9231/21_Winter_2017_Q6) - Further Work On Distributions

(i)	p - (1/6) ² or 1/36	B1	Find (or imply) probability p of pair of sixes in one throw
	1/p = 36	B1	Find mean value of X
(ii)	$P(X=12) = p (1-p)^{11} = 0.0204$	MI AI	Find prob. of needing exactly 12 throws
(iii)	$P(X > 12) = (1 - p)^{12} = 0.713$	M1 A1	Find prob. of needing more than 12 throws
		2	

2017 - 2023 Powered By : www.exam-mate.com

5 - (9231/21_Winter_2017_Q7) - Further Work On Distributions

(i)	$F(x) = \int f(x) dx = -e^{-0.2x} + c = 1 - e^{-0.2x} (x \ge 0)$	M1	State, or integrate and use $F(0) = 0$ or $F(x) \rightarrow 1$ as $x \rightarrow \infty$
	and $F(x) = 0$ ($x < 0$ or otherwise)	A1	to find, $F(x)$ (A0 if case $x \le 0$ omitted)
		2	
(ii)	$P(X > 2) = 1 - F(2) = e^{-0.4} = 0.670$	M1 A1	Find P(X > 2): (M0 for F(2))
		3	
(iii)	$1 - e^{-0.2m} = \frac{1}{2}$, $e^{0.2m} = 2$	M1	Find median value m from $F(m)$ or $1 - F(m) = \frac{1}{2}$
	m = 5 ln 2 or 3-47	M1 A1	
		3	

6 - (9231/21_Summer_2018_Q6) - Further Work On Distributions

(i)	$P(X > 2) = 1 - F(2) = \exp(-0.8) = 0.449$	M1 A1	Find P(X > 2). M0 for F(2)
		2	
(ii)	$F(Q) = 1 - \exp(-0.4x) = \frac{1}{4} \text{ or } \frac{3}{4}$	М1	Formulate equation for either quartile value ${\cal Q}$
	$Q_1 = (\ln 4/3) / (0.4)$ [= 0.7192] (AEF)	A1	Find one [lower] quartile Q ₁
	$Q_3 = (\ln 4) / (0.4)$ [= 3.466] (AEF)	A1	Find other [upper] quartile Q ₃
	$Q_3 - Q_1 = (\ln 3) / (0.4) = 2.75$	A1√	Find interquartile range (FT on Q_1 , Q_3 ; allow $Q_1 - Q_3$)
		4	

7 - (9231/23_Summer_2018_Q7) - Further Work On Distributions

(i)	$(1-p)/p^2 = 3.75, 15p^2 + 4p - 4 = 0$ AG	MI AI	Find given eqn. for p using $Var(X) = (1 - p)/p^2$
	(5p-2)(3p+2) = 0, p = 2/5 or 0.4	MI AI	Solve quadratic for p (A0 if $p = -\frac{3}{2}$ not [implicitly] rejected)
		4	
(ii)	$P(X = 5) = (1 - p)^4 p = 0.6^4 \times 0.4 = 0.0518 \text{ or } 162/3125$	B1	Find P(X = 5)
		1	
(iii)	EITHER: $P(3 \le X \le 7) = (1-p)^2 - (1-p)^7$	M1	Find $P(3 \leqslant X \leqslant 7)$
	$= 0.6^2 - 0.6^7 = 0.36 - 0.028 = 0.332$	A1	M0 for $P(X \le 7) - P(X \le 3)$ [= 0.188] or similar error
	OR: $P(3 \le X \le 7) = \sum_{i=3}^{n-3} (1-p)^{i-1} p$	(M1)	
	$= (0.6^2 + 0.6^3 + 0.6^4 + 0.6^5 + 0.6^6) \times 0.4$ = 0.830016 × 0.4 = 0.332	(A1)	
		2	

8 - (9231/21_Summer_2018_Q9) - Further Work On Distributions

(i)	$(1-p)/p^2 = 4/9,$ $4p^2 + 9p - 9 = 0$ AG	M1 A1	Find given eqn. for p using $Var(X) = (1 - p)/p^2$
	$(4p-3)(p+3)=0, p=\frac{1}{4}$	M1 A1	Solve quadratic for p (A0 if $p = -3$ not [implicitly] rejected)
		4	
(ii)	$P(X=3) = (1-p)^2 p = (\frac{1}{2})^2 \frac{1}{2} = \frac{3}{64} \text{ or } 0.0469$	B1	Find $P(X=3)$
		1	