A LEVEL Cambridge Topical Past Papers

BIOLOGY

2017 — 2023

P1

Chapter 1	CELL STRUCTURE	Page 1
Chapter 2	BIOLOGICAL MOLECULES	Page 86
Chapter 3	ENZYMES	Page 195
Chapter 4	CELL MEMBRANES AND TRANSPORT	Page 251
Chapter 5	THE MITOTIC CELL CYCLE	Page 307
Chapter 6	NUCLEIC ACIDS AND PROTEIN SYNTHESIS	Page 359
Chapter 7	TRANSPORT IN PLANTS	Page 413
Chapter 8	TRANSPORT IN MAMMALS	Page 486
Chapter 9	GAS EXCHANGE AND SMOKING	Page 548
Chapter 10	INFECTIOUS DISEASE	Page 607
Chapter 11	IMMUNITY	Page 647
	ANSWERS	Page 694

BIOLOGY 9700

TOPICAL PAST PAPER WORKSHEETS

2017 - 2023 | Questions + Mark scheme

AVAILABLE PAPERS

P1 P2

P4

1676 Questions

409 Questions

403 Questions

www.exam-mate.com

TOPICS	P1	P2	P4
CELL STRUCTURE	214	40	2
BIOLOGICAL MOLECULES	255	50	2
ENZYMES	119	31	13
CELL MEMBRANES AND TRANSPORT	127	33	2
THE MITOTIC CELL CYCLE	127	33	9
NUCLEIC ACIDS AND PROTEIN SYNTHESIS	134	42	8
TRANSPORT IN PLANTS	178	37	4
TRANSPORT IN MAMMALS	149	35	3
GAS EXCHANGE AND SMOKING	145	29	4
INFECTIOUS DISEASE	114	36	0
IMMUNITY	114	43	1
ENERGY AND RESPIRATION			44
PHOTOSYNTHESIS			37
HOMEOSTASIS			41
CONTROL AND CO-ORDINATION			47
INHERITED CHANGE			56
SELECTION AND EVOLUTION			44
BIODIVERSITY, CLASSIFICATION AND CONSERVATION			47
GENETIC TECHNOLOGY			39

1 - (9700/11_Summer_2017_Q1) - Cell Structure

Which definition of the magnification of a drawing of a leaf is correct?

- A the actual size of an object multiplied by the magnification of the microscope
- B the difference in size between an actual object and a drawing of the object
- C the increase in size of an object when observed using a microscope
- D the size of the drawing of a specimen in comparison to the actual size
- **2** (9700/12_Summer_2017_Q1) *Cell Structure*

Which organelles are enclosed in a single phospholipid bilayer and contain hydrolytic enzymes?

- A endocytotic vesicles
- B Golgi body
- C lysosomes
- D mitochondria
- **3** (9700/13_Summer_2017_Q1) *Cell Structure*

Where are cisternae found in a cell?

- 1 endoplasmic reticulum
- 2 Golgi body
- 3 mitochondrion
- A 1 and 2 B 1 and 3 C 1 only D 2 and 3

2017 - 2023 Powered By: www.exam-mate.com

4 - (9700/11_Summer_2017_Q2) **-** *Cell Structure*

The electron micrograph shows part of two cells.

Which labelled features identify these cells as eukaryotic?

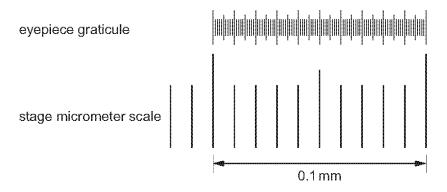
A W, X and Y

B W and X only C

C W only

D X only

5 - (9700/12_Summer_2017_Q2) **-** *Cell Structure*


The DNA of prokaryotes is naked and circular.

Which statement describes how the DNA of eukaryotes differs from that of prokaryotes?

- A It has a nuclear envelope around it and is a double helix.
- B It has a nuclear envelope around it and is circular.
- C It has proteins attached to it and is a double helix.
- D It has proteins attached to it and is linear.

6 - (9700/13_Summer_2017_Q2) - Cell Structure

The diagram shows an eyepiece graticule and part of a stage micrometer scale as seen using $\times 100$ magnification.

How is the value, in μ m, of one eyepiece graticule unit calculated?

- A divide 100 by 0.1 and multiply by 1000
- B divide 100 by 0.1 and multiply by 1000 divided by 100
- C multiply 0.1 by 1000 and divide by 100
- D multiply 0.1 by 1000 and divide by 100 then divide again by 100

7 - (9700/11_Summer_2017_Q3) - *Cell Structure*

Plant cells are fixed, stained and viewed using a student microscope. The light source was natural light.

What would be clearly visible at ×400 magnification?

- A cristae of mitochondria
- B grana of chloroplasts
- C nucleoli
- **D** ribosomes

8 - (9700/12_Summer_2017_Q3) - *Cell Structure*

The recently discovered *Pandoravirus* measures 1000 nm in diameter.

The Mimivirus has a diameter of 400 nm.

What can be detected using a light microscope with a maximum resolution of 0.25 μm?

- A both the Mimivirus and the Pandoravirus
- B neither the *Mimivirus* nor the *Pandoravirus*
- C the Mimivirus, but not the Pandoravirus
- D the Pandoravirus, but not the Mimivirus

2017 - 2023 Powered By: www.exam-mate.com

9 - (9700/13_Summer_2017_Q3) **-** *Cell Structure*

It is possible for a bacterium to synthesise a eukaryotic protein.

This involves introducing a eukaryotic gene into the bacterial DNA, which can be translated.

What explains why a bacterial cell can produce a eukaryotic protein but cannot produce a eukaryotic glycoprotein?

- A Bacteria do not have 70S ribosomes.
- B Bacteria do not have a nuclear envelope.
- C Bacteria do not have Golgi bodies.
- D Bacteria do not have mitochondria.

10 - (9700/11_Summer_2017_Q4) - *Cell Structure*

Which lengths are equivalent to 1 µm?

- 1 1000 mm
- 2 0.001 nm
- 3 0.001 mm
- 4 1000000 nm
- 5 0.01 mm
- 6 1000 nm

A 1 and 4 B 2 and 5 C 3 and 4 D 3 and 6

11 - (9700/12_Summer_2017_Q4) - Cell Structure

What are found in chloroplasts and mitochondria?

- 1 DNA
- 2 70S ribosomes
- 3 mRNA

A 1, 2 and 3 B 1 and 2 only C 1 only D 2 and 3 only

2017 - 2023 4 Powered By: www.exam-mate.com

12 - (9700/13_Summer_2017_Q4) - Cell Structure

Which structures are found in both typical eukaryotic cells and typical prokaryotic cells?

- 1 70S ribosomes
- 2 80S ribosomes
- 3 circular DNA

A 1, 2 and 3 B 1 and 3 only C 1 only D 2 only

13 - (9700/11_Summer_2017_Q5) - Cell Structure

Some secretory cells synthesise and release glycoproteins.

What is the correct order of the sequence of events as they occur in the secretory cell?

- 1 exocytosis
- 2 product accumulates in secretory vesicle
- 3 mRNA binds to ribosomes
- 4 synthesis of glycoprotein

A 3, 4, 1, 2 **B** 3, 4, 2, 1 **C** 4, 3, 1, 2 **D** 4, 3, 2, 1

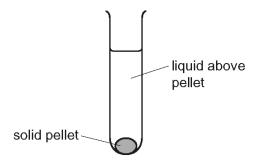
14 - (9700/12_Summer_2017_Q5) - *Cell Structure*

Boiling the bones and teeth from dead animals can be used to produce a type of glue.

The glue is formed from the collagen fibres present in bones and teeth.

Which statement describes the changes to collagen that occur when the glue is produced?

- A The fibres of collagen become more coiled.
- B The fibres of collagen become more flexible.
- C The helices of collagen molecules unwind.
- D The molecules of collagen dissolve in water.


2017 - 2023 5 Powered By: www.exam-mate.com

15 - (9700/11_Summer_2017_Q6) - *Cell Structure*

A scientist carried out an experiment to separate the organelles in an animal cell by mass.

The scientist mixed the cells with a buffer solution which had the same water potential as the cells. He then broke the cells open with a blender to release the organelles.

The extracted mixture was filtered and then spun in a centrifuge at a speed to separate the heaviest organelle. This sank to the bottom, forming a solid pellet, 1.

The liquid above pellet 1 was poured into a clean centrifuge tube and spun in the centrifuge at a higher speed to separate the next heaviest organelle. This organelle sank to the bottom, to form a solid pellet, 2.

He repeated this procedure twice more to obtain pellet 3 and pellet 4, each containing a single organelle.

What is the function of the organelle extracted in pellet 3?

- A digestion of old organelles
- B production of ATP
- C synthesis of mRNA
- D synthesis of protein

16 - (9700/12_Summer_2017_Q6) - *Cell Structure*

What describes the primary structure of a protein?

- A α-helix
- B a dipeptide
- C a globular structure
- D the specific order of amino acids

2017 - 2023 Powered By: www.exam-mate.com

17 - (9700/11_Winter_2017_Q1) - *Cell Structure*

Which row is correct for a typical plant cell?

	cell wall	cell diameter	ribosomes
Α	cellulose	1-5μ m	808
В	cellulose	5-40 μ m	70S and 80S
С	peptidoglycan	1-5 μ m	708
D	peptidoglycan	5-40 μm	70S and 80S

18 - (9700/12_Winter_2017_Q1) - *Cell Structure*

Which equation for calculating the actual size of a specimen, A, or image size, I, or magnification, M, is correct?

 $A A = M \div I$

 $B A = I \times M$

 $C I = M \div A$

 $D M = I \div A$

19 - (9700/13_Winter_2017_Q1) - Cell Structure

Which statement about the light microscope is correct?

- A As the smallest distance to see two points as distinct separate points decreases, the resolution also decreases.
- B If the resolution is 220 nm, then a bacterium $0.2 \mu m$ in diameter will not be visible.
- C If the wavelength of light is 600 nm, then two membranes 300 nm apart will be visible as two distinct membranes.
- D Using visible light of a longer wavelength, such as red light, will improve the resolution.

20 - (9700/11_Winter_2017_Q2) - *Cell Structure*

An electron micrograph of a cell shows large quantities of rough endoplasmic reticulum and many Golgi bodies.

What type of cell is being viewed?

- A bacterium
- B guard cell
- C lymphocyte
- D mesophyll

ANSWERS

2017 - 2023 694

1 - (9700/11_Summer_2017_Q1) - Cell Structure

D

2 - (9700/12_Summer_2017_Q1) - *Cell Structure*

C

3 - (9700/13_Summer_2017_Q1) - *Cell Structure*

A

4 - (9700/11_Summer_2017_Q2) - *Cell Structure*

 \mathbf{C}

5 - (9700/12_Summer_2017_Q2) - *Cell Structure*

D

6 - (9700/13_Summer_2017_Q2) - *Cell Structure*

 \mathbf{C}

7 - (9700/11_Summer_2017_Q3) - *Cell Structure*

 \mathbf{C}

8 - (9700/12_Summer_2017_Q3) - *Cell Structure*

A

9 - (9700/13_Summer_2017_Q3) - *Cell Structure*

 \mathbf{C}

10 - (9700/11_Summer_2017_Q4) - *Cell Structure*

D