A LEVEL Cambridge Topical Past Papers

PURE MATHEMATICS 3

2017 — 2023

Chapter 1	ALGEBRA	Page 1
Chapter 2	LOGARITHMIC & EXPONENTIAL FUNCTIONS	Page 70
Chapter 3	TRIGONOMETRY	Page 102
Chapter 4	DIFFERENTIATION	Page 158
Chapter 5	INTEGRATION	Page 226
Chapter 6	DIFFERENTIATION EQUATIONS	Page 312
Chapter 7	NUMERICAL METHODS	Page 362
Chapter 8	COMPLEX NUMBERS	Page 429
Chapter 9	VECTORS	Page 496
	ANSWERS	Page 559

PURE MATHEMATICS P3 9709

TOPICAL PAST PAPER WORKSHEETS

2017 - 2023 | Questions + Mark scheme

AVAILABLE PAPERS —

P1 490 Questions

P3432 Questions

P4 299 Questions

P5 287 Questions **P6**257 Questions

www.exam-mate.com

TOPICS	P3
ALGEBRA	63
LOGARITHMIC & EXPONENTIAL FUNCTIONS	32
TRIGONOMETRY	48
DIFFERENTIATION	59
INTEGRATION	66
DIFFERENTIATION EQUATIONS	39
NUMERICAL METHODS	37
COMPLEX NUMBERS	49
VECTORS	39

1 - (9709/31_Summer_2017_Q1) - *Algebra*

Solve the inequality |2x + 1| < 3|x - 2|.

[4]

2017 - 2023 Powered By: www.exam-mate.com

2 - (9709/31_Summer_2017_Q2) **-** *Algebra*

Expand $\frac{1}{\sqrt[3]{(1+6x)}}$ in ascending powers of x, up to and including the term in x^3 , simplifying the coefficients.

2017 - 2023 Powered By: www.exam-mate.com

3 - (9709/32_Summer_2017_Q2) **-** *Algebra*

Solve the inequality |x-3| < 3x - 4.

[4]

4 - (9709/32_Summer_2017_Q8) **-** *Algebra*

Let
$$f(x) = \frac{5x^2 - 7x + 4}{(3x + 2)(x^2 + 5)}$$
.

(i) Express f(x) in partial fractions.

[5]

(ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^2 . [5]

5 - (9709/33_Summer_2017_Q2) **-** *Algebra*

Expand $(3 + 2x)^{-3}$ in ascending powers of x up to and including the term in x^2 , simplifying the coefficients. [4]

2017 - 2023 5 Powered By: www.exam-mate.com

ANSWERS

2017 - 2023 559

1 - (9709/31_Summer_2017_Q1) - *Algebra*

EITHER: State or imply non-modular inequality $(2x+1)^2 < (3(x-2))^2$, or corresponding quadratic equation, or pair of linear equations $(2x+1) = \pm 3(x-2)$	(B1
Make reasonable solution attempt at a 3-term quadratic e.g. $5x^2 - 40x + 35 = 0$ or solve two linear equations for x	M1
Obtain critical values $x = 1$ and $x = 7$	A1
State final answer $x < 1$ and $x > 7$	A1)
OR: Obtain critical value $x = 7$ from a graphical method, or by inspection, or by solving a linear equation or inequality	(B1
Obtain critical value $x = 1$ similarly	B2
State final answer $x < 1$ and $x > 7$	B1)
Total:	4

2 - (9709/31_Summer_2017_Q2) - *Algebra*

EITHER: State a correct unsimplified version of the x or x^2 or x^3 term in the expansion of $(1+6x)^{-\frac{1}{3}}$	
State correct first two terms $1-2x$	A1
Obtain term $8x^2$	A1
Obtain term $-\frac{112}{3}x^3\left(37\frac{1}{3}x^3\right)$ in final answer	
OR: Differentiate expression and evaluate $f(0)$ and $f'(0)$, where $f'(x) = k(1+6x)^{-\frac{4}{3}}$	(M1
Obtain correct first two terms $1-2x$	A1
Obtain term $8x^2$	A1
Obtain term $-\frac{112}{3}x^3$ in final answer	
Total:	4

3 - (9709/32_Summer_2017_Q2) **-** *Algebra*

EITHER: State or imply non-modular inequality $(x-3)^2 < (3x-4)^2$, or corresponding equation	(B1
Make reasonable attempt at solving a three term quadratic	
Obtain critical value $x = \frac{7}{4}$	M1 A1
State final answer $x > \frac{7}{4}$ only	A1)
OR1: State the relevant critical inequality $3-x<3x-4$, or corresponding equation	(B1
Solve for x	M1
Obtain critical value $x = \frac{7}{4}$	A1
State final answer $x > \frac{7}{4}$ only	A1)
OR2: Make recognizable sketches of $y = x-3 $ and $y = 3x - 4$ on a single diagram	(B1
Find x-coordinate of the intersection	M1
Obtain $x = \frac{7}{4}$	A1
State final answer $x > \frac{7}{4}$ only	A1)
Total:	4

4 - (9709/32_Summer_2017_Q8) **-** *Algebra*

(i)	State or imply the form $\frac{A}{3x+2} + \frac{Bx+C}{x^2+5}$	B1
	Use a relevant method to determine a constant	M1
	Obtain one of the values $A = 2$, $B = 1$, $C = -3$	A1
	Obtain a second value	A1
	Obtain the third value	A1
	Total:	5
(ii)	Use correct method to find the first two terms of the expansion of $(3x+2)^{-1}$, $(1+\frac{3}{2}x)^{-1}$,	M1
	$(5+x^2)^{-1}$ or $(1+\frac{1}{5}x^2)^{-1}$	
	[Symbolic coefficients, e.g. $\binom{-1}{2}$ are not sufficient]	
	Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction. The FT is on A, B, C . from part (i)	A1FT + A1FT
	Multiply out up to the term in x^2 by $Bx + C$, where $BC \neq 0$	M1
	Obtain final answer $\frac{2}{5} - \frac{13}{10}x + \frac{237}{100}x^2$, or equivalent	A1
	Total:	5

2017 - 2023 Powered By : www.exam-mate.com