A LEVEL Cambridge Topical Past Papers

PURE MATHEMATICS 1

2017 — 2023

Chapter 1	COORDINATES GEOMETRY	Page 1
Chapter 2	FUNCTIONS	Page 54
Chapter 3	INTERSECTION POINTS	Page 154
Chapter 4	DIFFERENTIATION	Page 187
Chapter 5	SEQUENCES & SERIES	Page 286
Chapter 6	BINOMIAL THEOREM	Page 346
Chapter 7	TRIGONOMETRY	Page 385
Chapter 8	VECTORS	Page 459
Chapter 9	INTEGRATION	Page 484
Chapter 10	RADIANS	Page 592
	ANSWERS	Page 645

TOPICS P1 39 COORDINATES GEOMETRY **FUNCTIONS** 69 INTERSECTION POINTS 30 70 DIFFERENTIATION 48 **SEQUENCES & SERIES** 39 **BINOMIAL THEOREM** TRIGONOMETRY 61 VECTORS 18 INTEGRATION 75 41 **RADIANS**

PURE MATHEMATICS P1 9709

TOPICAL PAST PAPER WORKSHEETS

2017 - 2023 | Questions + Mark scheme

AVAILABLE PAPERS

P1 490 Questions

Р3 432 Questions

P4 299 Questions

P5 287 Questions

P6 257 Questions

www.exam-mate.com

 Points P and Q lie on the curve and have x-coordinates of \(\frac{1}{3}π \) and π respectively. (ii) Find the length of PQ correct to 1 decimal place. [2] 		
 (i) Sketch the graph of y = 2 cos x for -π ≤ x ≤ π, stating the coordinates of the point of intersection with the y-axis. [2] Points P and Q lie on the curve and have x-coordinates of ¹/₃π and π respectively. 	- (9709/11_Summer_2017_Q5) - Trigonometry, Coordinates Geometry	
with the y-axis. [2] Points P and Q lie on the curve and have x-coordinates of $\frac{1}{3}\pi$ and π respectively.	The equation of a curve is $y = 2 \cos x$.	
	(i) Sketch the graph of $y = 2 \cos x$ for $-\pi \le x \le \pi$, stating the coordinates of the p with the y-axis.	
(ii) Find the length of PQ correct to 1 decimal place. [2]		
	(ii) Find the length of PQ correct to 1 decimal place.	[2]

2017 - 2023 1 Powered By : www.exam-mate.com

The line through P and Q meets the x-axis at H(h, 0) and the y-axis at K(0, k).

(iii) Show that $h = \frac{5}{9}\pi$ and find the value of k.

[3]

2017 - 2023 Powered By: www.exam-mate.com

The p 2y = 3	point A has coordinates $(-2, 6)$. $3x + 5$.	The equation of the	perpendicular bisector of the line AB i
(i) H	Find the equation of AB.		[3
•			
•			
•			
•			
•			
(ii) I	Find the coordinates of <i>B</i> .		[3
•			
•			
•			
•			
•			
•			
•			
•			
•			

Powered By: www.exam-mate.com 2017 - 2023 3

- (-1, 1) and $P(a, b)$ are two points, where a and b are constants. The gradient of AP is 2.
(i)	Find an expression for b in terms of a .
(ii)	B(10, -1) is a third point such that $AP = AB$. Calculate the coordinates of the possible position of P .
(ii)	
(ii)	
(ii)	
(ii)	
(ii)	
(ii)	
(ii)	
(ii)	
(ii)	
(ii)	

2017 - 2023 4 Powered By: www.exam-mate.com

4 - (9709/11_Winter_2017_Q6) **-** *Coordinates Geometry*

The points A(1, 1) and B(5, 9) lie on the curve $6y = 5x^2 - 18x + 19$.

(i) Show that the equation of the perpendicular bisector of AB is 2y = 13 - x.

[4]

The perpendicular bisector of AB meets the curve at C and D.

(ii) Find, by calculation, the distance CD, giving your answer in the form $\sqrt{\left(\frac{p}{q}\right)}$, where p and q are integers.

Powered By: www.exam-mate.com 5 2017 - 2023

5 - (9709/13_Winter_2017_Q11) **-** Coordinates Geometry, Differentiation

The diagram shows the curve $y = (x-1)^{\frac{1}{2}}$ and points A(1, 0) and B(5, 2) lying on the curve.

(i) Find the equation of the line AB, giving your answer in the form y = mx + c.

(ii) Find, showing all necessary working, the equation of the tangent to the curve which is parallel to AB.

2017 - 2023 6 Powered By: www.exam-mate.com

(iii) Find the perpendicular distance between the line AB and the tangent parallel to AB. Give your answer correct to 2 decimal places. [3]

2017 - 2023 Powered By: www.exam-mate.com

ANSWERS

2017 - 2023 645

1 - (9709/11_Summer_2017_Q5) - Trigonometry, Coordinates Geometry

(i)		B1
		DB1
	Total:	2
(ii)	$P(\frac{\pi}{3},1) Q(\pi,-2)$	
	$\rightarrow PQ^2 = \left(\frac{2\pi}{3}\right)^2 + 3^2 \rightarrow PQ = 3.7$	M1 A1
	Total:	2

(iii)	Eqn of PQ $y-1 = -\frac{9}{2\pi} \left(x - \frac{\pi}{3}\right)$	M1
	If $y = 0 \rightarrow h = \frac{5\pi}{9}$	A1
	$If x = 0 \to k = \frac{5}{2},$	A1
	Total:	3

2017 - 2023 646 Powered By: www.exam-mate.com

2 - (9709/12_Summer_2017_Q2) - Coordinates Geometry

(i)	Gradient = 1.5 Gradient of perpendicular = $-\frac{2}{3}$	В1
	Equation of AB is $y-6=-\frac{2}{3}(x+2)$ Or $3y+2x=14$ oe	M1 A1
	Total:	3/
(ii)	Simultaneous equations → Midpoint (1, 4)	M1
	Use of midpoint or vectors $\rightarrow B$ (4, 2)	M1A1
	Total:	3

3 - (9709/13_Summer_2017_Q8) - *Coordinates Geometry*

(i)	(b-1)/(a+1)=2	M1
	b = 2a + 3 CAO	A1
	Total:	2
(ii)	$AB^2 = 11^2 + 2^2 = 125$ oe	B1
	$(a+1)^2 + (b-1)^2 = 125$	B1 FT
	$(a+1)^2 + (2a+2)^2 = 125$	M1
	$(5)(a^2+2a-24)=0 \rightarrow eg(a-4)(a+6)=0$	M1
	a = 4 or -6	A1
	b = 11 or -9	A1
	Total:	6

2017 - 2023 Powered By: www.exam-mate.com

4 - (9709/11_Winter_2017_Q6) **-** *Coordinates Geometry*

(i)	Mid-point of $AB = (3, 5)$	B1	Answers may be derived from simultaneous equations
	Gradient of AB = 2	B1	
	Eqn of perp. bisector is $y-5=-\frac{1}{2}(x-3) \rightarrow 2y=13-x$	M1A1	AG For M1 FT from mid-point and gradient of AB
		4	
(ii)	$-3x + 39 = 5x^2 - 18x + 19 \rightarrow (5)(x^2 - 3x - 4)(=0)$	MI	Equate equations and form 3-term quadratic
	x = 4 or -1	A1	
	$y = 4\frac{1}{2}$ or 7	A1	
	$CD^2 = 5^2 + 2V_2^2 \rightarrow CD = \sqrt{\frac{125}{4}}$	MIAI	Or equivalent integer fractions ISW
		5	

5 - (9709/13_Winter_2017_Q11) **-** Coordinates Geometry, Differentiation

(i)	Gradient of $AB = \frac{1}{2}$	B1	0.
	Equation of AB is $y = \frac{1}{2}x - \frac{1}{2}$	B1	
		2	
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = V_2(x-1)^{-\frac{1}{2}}$	B1	
	$\sqrt{2(x-1)^{-\frac{1}{2}}} = \sqrt{2}$. Equate their $\frac{dy}{dx}$ to their $\sqrt{2}$	*M1	
	x=2, y=1	A1	
	$y-1=\frac{1}{2}(x-2)$ (thro' their(2,1) & their $\frac{1}{2}$) $\to y=\frac{1}{2}x$	DM1 A1	<i>y</i>
		5	

	0.51	NT 0: 11: 15 11 :
EITHER:	(M1	Where θ is angle between AB and the x-axis
$\sin \theta = \frac{a}{1} \rightarrow d = \sin \theta$		
gradient of $AB = \frac{1}{2} \Rightarrow \tan \theta = \frac{1}{2} \Rightarrow \theta = 26.5(7)^{\circ}$	B1	
$d = \sin 26.5(7)^{\circ} = 0.45$ (or $\frac{1}{\sqrt{5}}$)	A1)	
OR1: Perpendicular through O has equation $y = -2x$	(M1	
Intersection with AB: $-2x = \frac{1}{2}x - \frac{1}{2} \rightarrow \left(\frac{1}{5}, \frac{-2}{5}\right)$	A1	
$d = \sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2} = 0.45 \text{ (or } \frac{1}{\sqrt{5}}\text{)}$	A1)	
OR2: Perpendicular through (2, 1) has equation $y = -2x + 5$	(M1	
Intersection with AB: $-2x+5=\frac{1}{2}x-\frac{1}{2} \rightarrow \left(\frac{11}{5},\frac{3}{5}\right)$	A1	
$d = \sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2} = 0.45 \text{ (or } 1/\sqrt{5}\text{)}$	A1)	
	$\sin \theta = \frac{d}{1} \rightarrow d = \sin \theta$ gradient of $AB = \frac{1}{2} \Rightarrow \tan \theta = \frac{1}{2} \Rightarrow \theta = 26.5(7)^{\circ}$ $d = \sin 26.5(7)^{\circ} = 0.45 \text{(or } \frac{1}{\sqrt{5}})$ $OR1:$ Perpendicular through O has equation $y = -2x$ Intersection with $AB: -2x = \frac{1}{2}x - \frac{1}{2} \rightarrow \left(\frac{1}{5}, \frac{-2}{5}\right)$ $d = \sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2} = 0.45 \text{ (or } \frac{1}{\sqrt{5}})$ $OR2:$ Perpendicular through $(2, 1)$ has equation $y = -2x + 5$ Intersection with $AB: -2x + 5 = \frac{1}{2}x - \frac{1}{2} \rightarrow \left(\frac{11}{5}, \frac{3}{5}\right)$	$\sin \theta = \frac{d}{1} \rightarrow d = \sin \theta$ gradient of $AB = \frac{1}{2} \Rightarrow \tan \theta = \frac{1}{2} \Rightarrow \theta = 26.5(7)^{\circ}$ B1 $d = \sin 26.5(7)^{\circ} = 0.45 \text{ (or } \frac{1}{\sqrt{5}})$ CR1: Perpendicular through O has equation $y = -2x$ Intersection with AB : $-2x = \frac{1}{2}x - \frac{1}{2} \Rightarrow \frac{1}{5}$ A1 $d = \sqrt{\left(\frac{1}{5}\right)^{2} + \left(\frac{2}{5}\right)^{2}} = 0.45 \text{ (or } \frac{1}{\sqrt{5}})$ CR2: Perpendicular through $(2, 1)$ has equation $y = -2x + 5$ Intersection with AB : $-2x + 5 = \frac{1}{2}x - \frac{1}{2} \Rightarrow \left(\frac{11}{5}, \frac{3}{5}\right)$ A1

2017 - 2023 Powered By : www.exam-mate.com