ADDITIONAL MATHEMATICS

0606 P1

2017 - 2023 QUESTIONS+ANSWERS

Chapter 1	Sets	Page 1
Chapter 2	Intersection Points	Page 10
Chapter 3	Surds, Indices & Logarithm	Page 27
Chapter 4	Factor Theorem	Page 73
Chapter 5	Matrices	Page 93
Chapter 6	Geometry Coordinate	Page 101
Chapter 7	Linear Law	Page 111
Chapter 8	Functions	Page 133
Chapter 9	Trigonometry	Page 183
Chapter 10	Circular Measure	Page 240
Chapter 11	Permutation & Combination	Page 270
Chapter 12	Binomial Theorem	Page 297
Chapter 13	Differentiation	Page 321
Chapter 14	Integration	Page 386
Chapter 15	Kinematics	Page 429
Chapter 16	Vectors	Page 457
Chapter 17	Relative Velocity	Page 483
Chapter 18	Sequences & Series	Page 491

ANSWERS Page 509

ADDITIONAL MATHEMATICS 0606

TOPICAL PAST PAPER WORKSHEETS

2017 - 2023 | Questions + Mark scheme

AVAILABLE PAPERS

P1

P2

471 Questions

478 Questions

www.exam-mate.com

TOPICS	P1	P2
Sets (not included from 2020)	9	8
Intersection Points	17	30
Surds, Indices & Log	46	61
Factor Theorem	20	19
Matrices	7	10
Geometry Coordinate	10	15
Linear Law	19	11
Functions	47	57
Trigonometry	56	41
Circular Measure	26	11
Permutation & Combination	25	19
Binomial Theorem	24	16
Differentiation	62	83
Integration	43	46
Kinematics	19	16
Vectors	20	15
Relative Velocity	7	5
Sequences & Series	14	15

1 - (0606/12_Summer_2017_Q1) - Sets

On each of the Venn diagrams below, shade the region which represents the given set.

[3]

2017 - 2023 Powered By : www.exam-mate.com

2 - (0606/13_Summer_2017_Q1) - Sets

(a) On the Venn diagram below, shade the region which represents $(A \cap B') \cup (C \cap B')$. [1]

(b) Complete the Venn diagram below to show the sets Y and Z such that $Z \subset X \subset Y$. [1]

2017 - 2023 Powered By: www.exam-mate.com

3 - (0606/11_Winter_2017_Q1) - Sets

Express in set notation the shaded regions shown in the Venn diagrams below.

(i)

[1]

(ii)

.....[1]

(iii)

.....[1]

2017 - 2023 Powered By: www.exam-mate.com

4 - (0606/12_Winter_2017_Q1) **-** *Sets*

(i) On the Venn diagram below, draw sets X and Y such that $n(X \cap Y) = 0$.

[1

(ii) On the Venn diagram below, draw sets A, B and C such that $C \subset (A \cup B)'$.

[2]

5 - (0606/11_Summer_2019_Q1) **-** *Sets*

(a) On the Venn diagrams below, shade the region indicated.

[2]

(b) On the Venn diagram below, draw sets P, Q and R such that

$$P \subset R$$
, $Q \subset R$ and $P \cap Q = \emptyset$.

[2]

6 - (0606/12_Summer_2019_Q1) **-** *Sets*

(a) On the Venn diagrams below, shade the region indicated.

 $A \cup (B \cap C)$

[2]

$$\mathcal{E} = \{x : 0^{\circ} \leq x \leq 360^{\circ}\}$$

$$P = \{x : \cos 2x = 0.5\}$$

$$Q = \{x : \sin x = 0.5\}$$

Find
$$P \cap Q$$
.

[3]

7 - (0606/13_Summer_2019_Q1) **-** *Sets*

Describe, using set notation, the relationship between the sets shown in each of the Venn diagrams below.

.....

[3]

2017 - 2023 Powered By: www.exam-mate.com

8 - (0606/11_Winter_2019_Q1) - Sets

Using set notation, describe the regions shaded on the Venn diagrams below.

2017 - 2023 8 Powered By: www.exam-mate.com

9 - (0606/13_Winter_2019_Q1) - Sets

In a group of 145 students, the numbers studying mathematics, physics and chemistry are given below. All students study at least one of the three subjects.

x students study all 3 subjects

- 24 students study both mathematics and chemistry
- 23 students study both physics and chemistry
- 28 students study both mathematics and physics
- 50 students study chemistry
- 75 students study physics
- 80 students study mathematics
- (i) Using the Venn diagram, find the value of x.

(ii) Find the number of students who study mathematics only.

[1]

1 - (0606/11_Summer_2017_Q1) - Intersection Points, Differentiation

The line y = kx - 5, where k is a positive constant, is a tangent to the curve $y = x^2 + 4x$ at the point A.

(i) Find the exact value of k.

[3]

(ii) Find the gradient of the normal to the curve at the point A, giving your answer in the form $a + b\sqrt{5}$, where a and b are constants.

2017 - 2023

2 - (0606/13_Winter_2017_Q3) - *Intersection Points*

Find the set of values of k for which the equation $kx^2 + 3x - 4 + k = 0$ has no real roots. [4]

2017 - 2023 Powered By : www.exam-mate.com

ANSWERS

2017 - 2023 509

1 - (0606/12_Summer_2017_Q1) - Sets

2 - (0606/13_Summer_2017_Q1) - Sets

3 - (0606/11_Winter_2017_Q1) - Sets

.(i)	$A' \cap B$	B1
(ii)	$A \cap B \cap C$	B1
(iii)	$A \cup B$	B1

4 - (0606/12_Winter_2017_Q1) **-** *Sets*

2017 - 2023 511 Powered By: www.exam-mate.com

5 - (0606/11_Summer_2019_Q1) **-** *Sets*

(a)		B1	
	*	В1	
(b)		В2	B1 for $P \subset R$ and $Q \subset R$ B1 for $P \cap Q = \emptyset$

6 - (0606/12_Summer_2019_Q1) - Sets

2017 - 2023 512 Powered By: www.exam-mate.com

(b)	$P = \{30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}\}$	B1	May be seen or implied in a Venn diagram Allow without set notation
	$Q = \{30^{\circ}, 150^{\circ}\}$	B1	May be seen or implied in a Venr diagram Allow without set notation
	$P \cap Q = \{30^{\circ}, 150^{\circ}\}$	B1	Dep on both previous B marks Must be in set notation

7 - (0606/13_Summer_2019_Q1) **-** *Sets*

$A \cap B = \emptyset$	B1	
$Z \subset (X \cap Y)$	В2	B1 for identifying $X \cap Y$

8 - (0606/11_Winter_2019_Q1) - Sets

$A' \cap B$ oe	B1	
$(X \cap Y) \cup (X \cap Z)$ or $X \cap (Y \cup Z)$	B1	

9 - (0606/13_Winter_2019_Q1) - Sets

(i)	28+x (28-x) 24+x	M1	for a Venn diagram showing at least 4 correct 'parts' in terms of x
	24-x 23-x 3+s	A1	for all 7 'parts' correct in terms of x on a Venn diagram or in working. May be implied by a correct equation.
	80 + 24 + x + 23 - x + 3 + x = 145 $50 + 28 + x + 28 - x + 24 + x = 145$ $75 + 28 + x + 24 - x + 3 + x = 145$ $50 + 80 + 75 - (23 + 28 + 24) + x = 145$ or equivalents	M1	for forming an equation in x using sum of 'parts' = 145 or $50+80+75-(23+28+24)+x=145$ Equations must be seen
	x=15	A1	from correct working only
(ii)	43	B1ft	for their x plus 28

2017 - 2023 513 Powered By: www.exam-mate.com

1 - (0606/11_Summer_2017_Q1) - Intersection Points, Differentiation

(i)	$kx - 5 = x^{2} + 4x$ $x^{2} + (4 - k)x + 5 = 0$
	For a tangent $(4-k)^2 = 20$
	$k=4+2\sqrt{5}$
	Alternative
	Gradient of line = k
	Gradient of curve = $\frac{dy}{dx} = 2x + 4$
	Equating: $k = 2x + 4$
	substitution of $k = 2x + 4$ or $x = \frac{k - 4}{2}$ in
	$kx-5=x^2+4$ and simplify to a quadratic equation in k or x
	$k = 4 + 2\sqrt{5}$
(ii)	Normal gradient = $-\frac{1}{4+2\sqrt{5}} \times \frac{4-2\sqrt{5}}{4-2\sqrt{5}}$
	0.5
	$=-\frac{4-2\sqrt{5}}{-4}$ oe