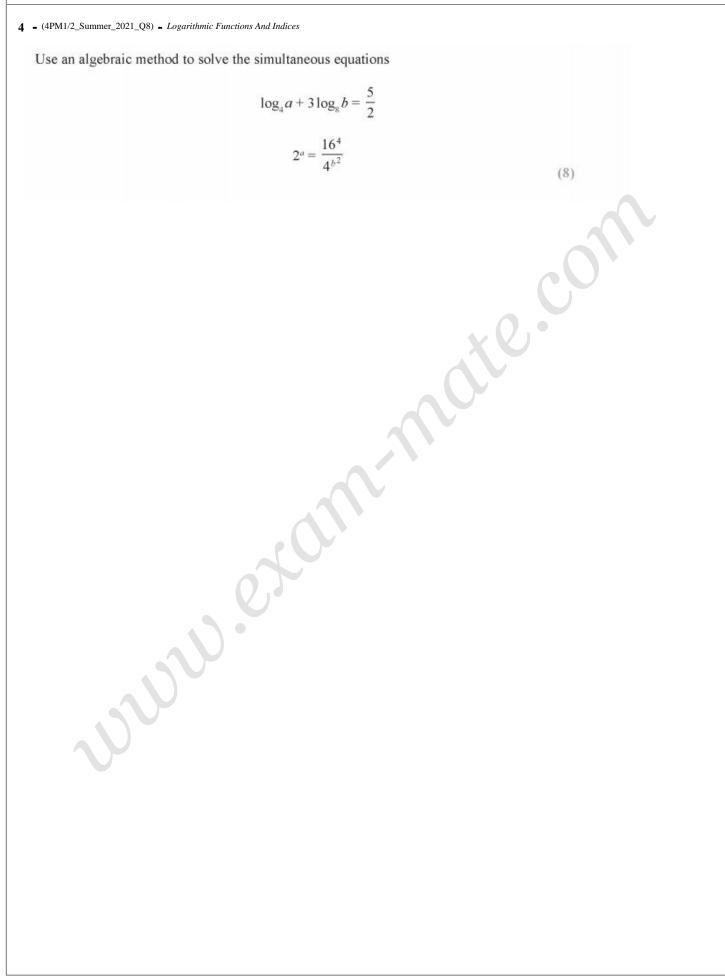
IGCSE (9-1) Edexcel Past Papers

FURTHER PURE MATHEMATICS

Paper 2, 2R 2019 - 2023

Chapter 1	LOGARITHMIC FUNCTIONS AND INDICES	Page 1
Chapter 2	THE QUADRATIC FUNCTION	Page 9
Chapter 3	IDENTITIES AND INEQUALITIES	Page 27
Chapter 4	GRAPHS	Page 40
Chapter 5	SERIES	Page 54
Chapter 6	THE BINOMIAL SERIES	Page 68
Chapter 7	SCALAR AND VECTOR QUANTITIES	Page 74
Chapter 8	RECTANGULAR CARTESIAN COORDINATES	Page 81
Chapter 9	CALCULUS	Page 97
Chapter 10	TRIGONOMETRY	Page 149
Chapter 11	RADIANS	Page 173
5	ANSWERS	Page 182
JUN		


IGCSE (9-1) EDEXCEL	FURTHER PURE MATHEMATICS - 2, 2R	CH1 - Logarithmic functions and indices
1 - (4PM1/2_Summer_2020_Q4) - Logarithmic Fund	ctions And Indices	
(i) Solve the equation $16\log_r 4 =$	$= \log_4 r$	(2)
(ii) Solve the equation $\log_5 9 + \log_5 9$	$g_5 12 + \log_5 15 + \log_5 18 = 1 + \log_5 x + \log_5 x^2$	

ſ

2 - (4PM1/2_Summer_2020_Q8) - Logarithmic Functions And Indices	
The curve C_1 has equation $y = 5e^{-2x} + 4$	
The curve C_2 has equation $y = e^{2x}$	
The curves C_1 and C_2 intersect at the point A.	
(a) Find the exact coordinates of A.	
(4)	
The tangent at A to C_1 intersects the x-axis at the point B.	
(b) Show that the x coordinate of B is $\frac{1}{2}(5 + \ln 5)$ (5)	
The tangent at A to C_2 intersects the x-axis at the point D.	
(c) Find the area of ΔABD .	
(6)	
xU	

IGCSE (9-1) EDEXCEL	FURTHER PURE MATHEMATICS - 2, 2R	CH1 - Logarithmic functions and indices
3 - (4PM1/2R_Summer_2020_Q8) - Logarithmic Funct	tions And Indices	
Solve the equation $\log_3 x - 2\log_x 3$	= 1	(7)
		Q •
		Powered By : www.exam_mate.com

IGCSE (9-1) EDEXCEL

IGCSE (9-1) EDEXCEL	FURTHER PURE MATHEMATICS - 2, 2R	CH1 - Logarithmic functions and indices
5 – (4PM1/2_Summer_2022_Q10) – <i>Logarithmic F</i>	unctions And Indices	
Solve the equation		
	$\log_4 x + \log_{16} x + \log_2 x = 10.5$	
Show your working clearly.		(5)
	×	Q .•
\sim		

ANSWERS

IGCSE (9-1) EDEXCEL

(i)	$\frac{16}{\log_4 r} = \log_4 r \Longrightarrow 16 = (\log_4 r)^2 \Longrightarrow \log_4 r = \pm 4$	M1
	$r = 4^4 = 256$ or $r = 4^{-4} = \frac{1}{256}$	A1 (2)
(ii)	$\log_5 9 + \log_5 12 + \log_5 15 + \log_5 18 = \log_5 (9 \times 12 \times 15 \times 18) = \log_5 29160$	M1
	$1 + \log_5 x + \log_5 x^2 = \log_5 5 + \log_5 x + \log_5 x^2 = \log_5 5x^3$	M1A1
	$5x^3 = 29160$	dM1
ALT 1	<i>x</i> = 18	A1 (5) [7]
	$LHS = log_{5} 29160$	M1
	$RHS = 1 + \log_5 x^3$	M1
	$\left(\frac{\log_{10} 29160}{\log_{10} 5}\right) = 6.387\left(=\log_5 x^3 + 1\right)$	Al
	$(\log_{10} 5)$ 5.387= 3 $\log_5 x$	dM1
	$\log_5 x = 1.795$	awi
	x = 18	A1
ALT 2	LHS = $\log_{5} 29160$	M1
	$RHS = \log_5 5 + \log_5 x^3$	M1A1
	$\log_5 29160 = \log_5 5 + \log_5 5832$	
	$5832 = x^3$ x = 18	dM1 A1
	x = 18	AI
ALT 3	$LHS = \log_5 5832 + \log_5 5$	M1
	$RHS = 1 + \log_5 x^3$	M1
	$LHS = \log_5 5832 + 1$	Al
	$\log_5 5832 = \log_5 x^3$ $5832 = x^3$	dM1
	$\begin{array}{c} 5852 = x \\ x = 18 \end{array}$	A1
ALT 4	$\log_5 29160 - \log_5 x^3 = 1$	M1M1
	$\log_3 \frac{29160}{r^3} = 1$	Al
	$\frac{29160}{x^3} = 5 \Longrightarrow x^3 = 5832$	dM1
	x^3 x = 18	A1

IGCSE (9-1) EDEXCEL

(a)	$5e^{-2x} + 4 = e^{2x} 5e^{-2x} + 4 - e^{2x} = 0 \qquad \text{OR} y = \frac{5}{y} + 4 \Rightarrow y^2 - 4y - 5 = 0$	M1
	$(5e^{-x} - e^{x})(e^{-x} + e^{x}) = 0$ $(y-5)(y+1) = 0$	Ml
	$5e^{-x} = e^x e^{2x} = 5 x = \frac{1}{2}\ln 5 \text{ (oe eg } \ln \sqrt{5}\text{)}$ $y = 5$	A1
	$5e^{-2x} + 4 = e^{2x} 5e^{-2x} + 4 - e^{2x} = 0 \qquad OR \qquad y = \frac{5}{y} + 4 \Longrightarrow y^2 - 4y - 5 = 0$ $(5e^{-x} - e^x)(e^{-x} + e^x) = 0 \qquad (y - 5)(y + 1) = 0$ $5e^{-x} = e^x e^{2x} = 5 x = \frac{1}{2}\ln 5 \text{ (oe eg } \ln \sqrt{5}) \qquad y = 5$ $(e^{-x} = -e^x \text{ not possible}) \qquad e^{2x} = 5 x = \frac{1}{2}\ln 5$	
	$A ext{ is } \left(\frac{1}{2} \ln 5, 5\right)$	A1 (4)
(b)	$y = 5e^{-2x} + 4 \Longrightarrow \frac{dy}{dx} = -10e^{-2x}$	M1
	$y = 5e^{-2x} + 4 \Longrightarrow \frac{dy}{dx} = -10e^{-2x}$ At $A = \frac{dy}{dx} = -10e^{-2x} = -10 \times \frac{1}{5} = -2$	Alft
	Eqn tgt: $y-5 = -2\left(x-\frac{1}{2}\ln 5\right)$	dM1A1
	$y=0 \Rightarrow x=\frac{1}{2}(5+\ln 5) (=x \text{ coordinate of } B)^*$	A1cso (5)
LT	For last 3 marks:	
	Hence $\frac{5}{NB} = 2 \Rightarrow NB = \frac{5}{2}$	dM1A1
	$ON = \frac{1}{2} \ln 5$	
	$OB = \frac{1}{2}\ln 5 + \frac{5}{2} = \frac{1}{2}5 + \ln 5 *$	A1cso
	dv	51x517.45045
(c)	$C_2: \frac{dy}{dx} = 2e^{2x} \Rightarrow \text{grad tgt at } A \text{ is } 2 \times 5 = 10$	B1ft
	Eqn tgt: $y-5 = 10\left(x - \frac{1}{2}\ln 5\right)$	M1
	Eqn tgt: $y-5 = 10\left(x - \frac{1}{2}\ln 5\right)$ At D: $x = \frac{1}{2}(-1 + \ln 5)$	Al
	Area $\triangle ABD = \frac{1}{2} \left(\frac{1}{2} (5 + \ln 5) - \frac{1}{2} (-1 + \ln 5) \right) \times 5$	M1A1
	$=\frac{15}{2} \text{ or } 7\frac{1}{2} \text{ (units}^2)$	A1 (6)
	See notes for area by "determinant" method	
LT	For second and third marks:	
	$\frac{5}{ND} = 10 \Rightarrow ND = \frac{1}{2}$	M1
	$OD = \frac{1}{2} \ln 5 - \frac{1}{2}$	A1 [15]

3 - (4PM1/2R_Summer_2020_Q8) - *Logarithmic Functions And Indices*

$\log_x 3 = \frac{1}{\log_3 x}$	B1	
Let $y = \log_3 x$		
So $y - \frac{2}{y} = 1$	M1	
$y^{2} - y - 2 = 0$ (y-2)(y+1) = 0	A1	
$\log_3 x = 2 \text{ or } \log_3 x = -1$	M1 M1	
$x = 9 \text{ or } x = \frac{1}{3}$	A1 A1	
	[7]	

4 - (4PM1/2_Summer_2021_Q8) - *Logarithmic Functions And Indices*

$\log_4 a + 2\log_4 b = \frac{5}{2}$	M1
$\log_4(ab^2) = \frac{5}{2}$ $32 = ab^2$	M1
$32 = ab^2$	Al
$2^{a} = \frac{2^{16}}{2^{2b^2}}$	M1
$2^{a} = \frac{2^{16}}{2^{2b^{2}}}$ $a = 16 - 2b^{2}$ or $b^{2} = 8 - \frac{1}{2}a$	A1
$32 = a(8 - \frac{1}{2}a)$ or $32 = (16 - 2b^2)b^2$	M1
$a^2 - 16a + 64 = 0$ or $2b^4 - 16b^2 + 32 = 0$	A1
a=8 $b=2$	A1
Tot	al 8 marks

5 - (4PM1/2_Summer_2022_Q10) - Logarithmic Functions And Indices

$\frac{\log_2 x}{\log_2 4} + \frac{\log_2 x}{\log_2 16} + \log_2 x = 10.5$	M1
$\frac{\log_2 x}{2} + \frac{\log_2 x}{4} + \log_2 x = 10.5$	M1
$\frac{7}{4}\log_2 x = 10.5$ x = 2 ^{'6'} x = 64	M1
$x=2^{6'}$	M1
x = 64	A1 (5)
	Total 5 marks

6 - (4PM1/2_Summer_2023_Q1) - Logarithmic Functions And Indices

$\frac{\left(a+2\sqrt{5}\right)}{\left(3-\sqrt{5}\right)} \times \frac{\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)} = \frac{3a+a\sqrt{5}+6\sqrt{5}+10}{9-5} \left(=\frac{3a+10+(6+a)\sqrt{5}}{4}\right)$	M1
$\left(\frac{3a+10+(6+a)\sqrt{5}}{4} = \frac{11+b\sqrt{5}}{2}\right)$	
$\Rightarrow \frac{3a+10}{4} = \frac{11}{2} \text{ oe } \Rightarrow a = 4 \Rightarrow \frac{6+a}{4} = \frac{b}{2} \text{ oe } \Rightarrow b = 5$	M1M1A1A1 [5]
ALT	
$\left(\frac{\left(a+2\sqrt{5}\right)}{\left(3-\sqrt{5}\right)}=\frac{11+b\sqrt{5}}{2}\Rightarrow\right)2\left(a+2\sqrt{5}\right)=\left(3-\sqrt{5}\right)\left(11+b\sqrt{5}\right)$	MI
$2a + 4\sqrt{5} = 33 + 3b\sqrt{5} - 11\sqrt{5} - 5b\left(=(33 - 5b) + (3b - 11)\sqrt{5}\right)$	M1
$\Rightarrow 4 = 3b - 11 \Rightarrow b = 5$	
$\Rightarrow 2a = 33 - 5b \Rightarrow a = 4$	M1M1A1A1
	[5]
	Total 5 marks