Topical Past Papers IGCSE 9-1 Edexcel

PAPER 1P, 1PR 2019 - 2023

Forces and Motion Page 1 Chapter 1 Electricity Page 83 Chapter 2 Page 149 Waves Chapter 3 **Energy Resources and Energy Transfers** Page 218 Chapter 4 Solids, Liquids and Gases Page 249 Chapter 5 Page 300 Magnetism and Electromagnetism Chapter 6 Page 349 Chapter 7 **Radioactivity and Particles** Page 404 Astrophysics Chapter 8 Page 436 **ANSWERS**

1 - (4PH1/1P_Summer_2019_Q4) - Forces And Motion

A car driver sees a hazard on the road ahead.

The graph shows the velocity of the car from when the driver sees the hazard.

Velocity in m/s $15 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - $	ime in seconds	
(a) (i) Use the graph to determine the reaction time of	the driver.	
	reaction time =	(1) s
(ii) Calculate the stopping distance of the car.		(4)
excit		
sto	pping distance =	m
(iii) Calculate the acceleration of the car when the ca	ar is braking.	(3)
	acceleration =	m/s²

1

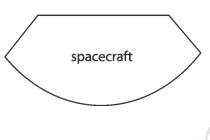
SCSE (9-1) EDEXCEL	PHYSICS - 1P, 1PR	CH1 - Forces and motio
(b) The speed of the car affe	ects the thinking distance and the braking distance	2.
Discuss other factors that the car.	t affect the thinking distance and the braking dist	ance of
the tal.		(4)
	(Total for Question 4 =	= 12 marks)
	0,5	

PHYSICS - 1P, 1PR

2 - (4PH1/1P_Summer_2019_Q5) - Forces And Motion

This question is about stretching a spring.

(a) The graph shows how the extension of a spring varies when a force is applied to the spring.The line on the graph shows that the spring has been extended past its elastic limit.

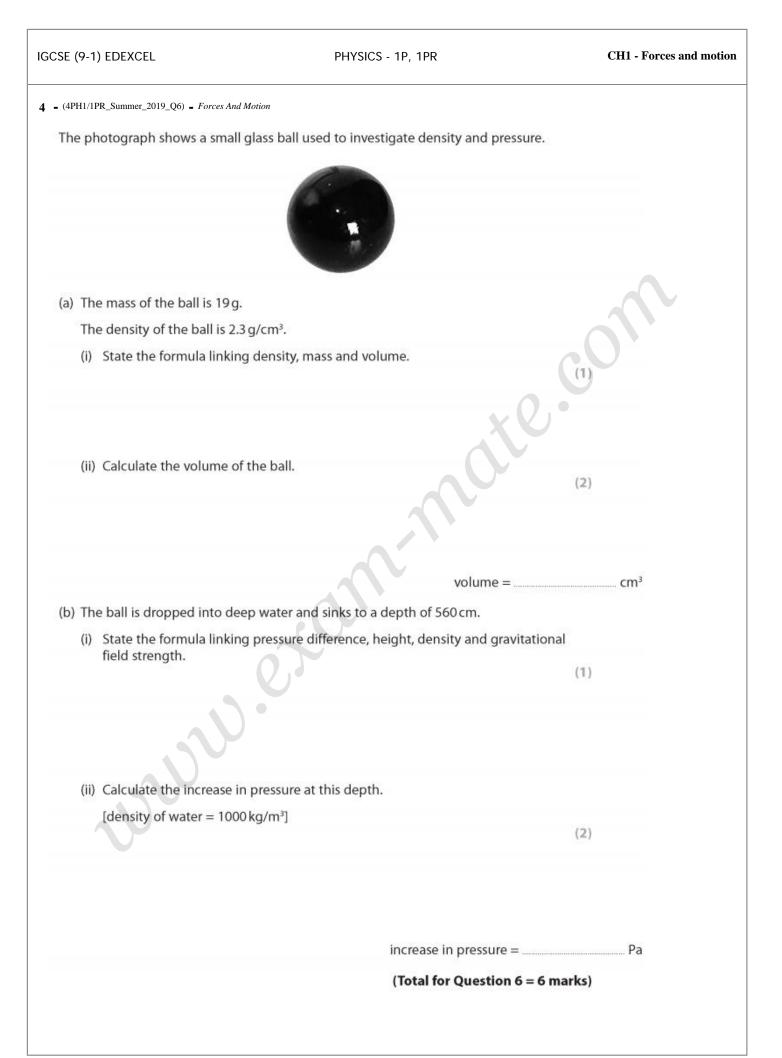

The line has a straight section and a curved section.

	Extension	on
	0	
	0 Force	
(i)	Draw a cross on the line to show the elastic limit of the spring.	(1)
(ii)	Sketch another line to show how the extension will change when the force is decreased from its maximum value back to 0.	\ = J
		(2)
(b) (i)	State which energy store of the spring increases when it is stretched. Assume the spring does not reach its elastic limit.	
	Assume the spring does not reach its elastic limit.	(1)
(ii)	How is this energy transferred to the spring?	(1)
X	A electrically	x - <i>y</i>
\times	B by heating	
\times	C mechanically	
\square	D by radiation	
	(Total for Question 5 = 5 ma	rks)

3 - (4PH1/1P_Summer_2019_Q8) - Forces And Motion

Schiaparelli is a spacecraft that was sent to Mars in 2016.

- (a) Schiaparelli slowed down as it fell vertically through the atmosphere of Mars.
 - (i) Draw labelled arrows on the diagram to show the forces acting on Schiaparelli as it fell.


(ii) Schiaparelli then opened a parachute to slow down.

Explain how the spacecraft reached a low terminal velocity after opening its parachute. Use ideas about forces in your answer.

(4)

(3)

IGCSE (9-1) EDEXCEL	PHYSICS - 1P, 1PR	CH1 - Forces and motion
(b) The parachute was disconn the surface of Mars and trav	ected when Schiaparelli was at a height of 2.0 velling at a speed of 0.45 m/s.	m from
Calculate the speed of the s [acceleration of free-fall on	spacecraft just before it hits the surface of Mars Mars = 3.4 m/s²]	. (4)
		()
		cO'
	×	2.
	speed =	m/s
(c) Suggest why Mars has a lov	wer gravitational field strength than Earth.	(1)
	(Total for Question 8	= 12 marks)
	•	

5 - (4PH1/1PR_Summer_2019_Q7) - Forces And Motion

A student investigates how the surface material of a ramp affects the average speed of a block sliding down the ramp.

(a) Design a suitable method for the student's investigation.

Your answer should include

- the measuring equipment needed
- details of the independent, dependent and control variables
- how the average speed will be determined

You may include a diagram to help your answer.

(b) Justify why the student should display their results as a bar chart.

(1)

(6

(Total for Question 7 = 7 marks)

ANSWERS

1 • (4PH1/1P_Summer_2019_Q4) • Forces And Motion

(a) (i)	0.9 (s);		1
(ii)		allow ECF from incorrect time	4
		found in (a)(i)	
	distance = area (under line);	can be implied from calculation,	
		explicit statement or working on	
		graph itself	
	thinking distance (rectangle) = 13.5(m) OR		
	braking distance (triangle) = 23.25 (m)		
	correctly determined;		
	attempt at calculating area of a trapezium /		
	adding values for areas of rectangle and		
	triangle;)
	(stopping distance =) 37 (m);	allow 36.75, 36.7, 36.8	
A10	acceleration formula coop in working	can be implied from a battering	-
(iii)	acceleration formula seen in working;	can be implied from substitution of data	3
	correct substitution into acceleration	allow ECF from incorrect time	
	formula;	found in (a)(i)	
	evaluation of acceleration;	reject if given as a positive value	
		reject if given as a positive value	
	e.g.		
	(acceleration =) change in velocity + time	allow (a =) v-u ÷ t	
		allow acceleration is gradient	
		condone change in speed ÷ time	
	(acceleration =) (-)15 / 3.1		
	(acceleration =) -4.8 (m/s ²)	allow any answer that rounds to	
		-4.8	
		allow deceleration = 4.8 (m/s ²)	
(b)	max. two factors linked to thinking distance:	allow 'reaction time' if no other	4
		thinking distance mark achieved	
		ignore factors affecting visibility	
	MP1. tiredness (of driver);		
	MP2. age (of driver);		
	MP3. alcohol or drug consumption;	e.g. caffeine, medicine etc.	
	MP4. distraction (of driver);	e.g. using a mobile phone etc.	
	max, two factors linked to braking distance;	ignore bald "the weather"	
	MP5. mass / weight of car;	allow however expressed e.g.	
	Weight Of Car,	more people, less luggage etc.	
	MP6. condition of brakes;	more people, less luggage etc.	
	MP7. condition of road;	e.g. icy road, wet road	
	MP8. condition of tyres;	e.g. how much grip left / eq	
	MP9. slope of road;	e.g. whether the car is going up	
		or downhill	

IGCSE (9-1) EDEXCEL

2 - (4PH1/1P_Summer_2019_Q5) - Forces And Motion cross drawn on line in region shown; cross cannot be drawn (a) (i) 1 at the extreme upper end of the curved line Extension 0 0 Force (ii) any line drawn above and starting at the end of the original that shows a reduction in extension as the force is decreased; line drawn is straight and returns to the extension axis DOP above the origin; judge straightness by eye Extension 0 Force (b) (i) elastic (potential); 1 C (mechanically); (ii) 1 A is incorrect because there is no electrical circuit B is incorrect because there is no temperature difference D is incorrect because transfers by radiation do not involve forces

(a)	(î)		ignore starting position of	3
		downward force arrow labelled "weight";	arrows and any horizontal arrows allow "gravitational force",	
			"gravitational pull", "force of gravity"	
		upward force arrow labelled "drag" /	reject "gravity" allow "friction"	
		"air resistance";	ignore "upthrust"	
		upward force larger than downward force by eye;		
((ii)	any four from:	allow "drag" for air	4
			resistance throughout condone "gravity" for	
			weight throughout	
		MP1.air resistance increases (greatly) when	allow "upwards force" for	
		parachute is opened;	air resistance	
		MP2. idea that air resistance is greater than	allow upward force is	
		weight;	bigger than downward force	
		MP3. (therefore) resultant force is upwards;	allow deceleration /	
			upwards acceleration ignore "it slows down"	
		MP4. idea that as speed decreases, air resistance		
		decreases;		
		MP5. resultant force (eventually) becomes zero;	allow forces are	
			balanced/equal air resistance = weight	
			_	
		MP6. constant speed achieved;	allow idea that there is no acceleration	

IGCSE (9-1) EDE>	CEL PHYSICS - 1P, 1P	R	CH1 - Forces and motion
(b)	attempted use of $v^2 = u^2 + (2 \times a \times s)$;	accept answers in terms of GPE lost = KE gained, whatever candidate chooses for mass can be implied from calculation reject if contradicted by another irrelevant formula and no further working seen	4
	correct substitution; rearrangement of formula / evaluation of v ² ; evaluation of v; e.g. $v^2 = u^2 + (2 \times a \times s);$ $v^2 = 0.45^2 + (2 \times 3.4 \times 2.0);$ $v = \sqrt{(0.45^2 + (2 \times 3.4 \times 2.0))}$ OR $v^2 = 13.8$ (v =) 3.7 (m/s)	allow if 13.8 seen allow 3.72, 3.715	
(C)	any one from: MP1. Mars has a smaller mass; MP2. Mars has a lower density; MP3. Mars has a smaller (iron rich) core;	allow RA allow Mars is less massive	1

	(i)	density = mass / volume;	allow rearrangements and use of symbols e.g. V = m / ρ or D = M/V	1
	(11)	substitution OR rearrangement;		2
		evaluation;		
		e.g. V = m / p OR 2.3 = 19 / V (V =) 8.3 (cm ³)	allow 8.26	
(b)	(i)	pressure difference = height x density x g;	allow use of standard symbols e.g. p = h x p x g reject 'gravity'	1
	(ii)	substitution;	accept use of $g = 9.8(1)$ m/s ²	2
		evaluation;		
		e.g. (p =) 5.6 x 1000 x 10		
		(p =) 56 000 (Pa)	-1 if POT error in substitution	
			Use of 9.8 gives 54 880 Use of 9.81 gives 54 936	
			Both round to 55 000	
			Both round to 55 000	
-	5		Both round to 55 000	
, ,	5		Both round to 55 000	
	5		Both round to 55 000	

(a)	measuring equipment:	allow if clearly included in diagram	6
	MP1. ruler / tape measure;	in diagram	
	MP2. stopclock / stopwatch;	condone 'timer'	
		accept use of light	
		gates if connected to	
		timing device e.g. computer/datalogger	
		accept 'camera' if subsequent method	
		describes 'freeze-	
		frame'/timestamp technique	
	variables:	C	J
	MP3. surface material is the independent variable;		
	MP4. (average) speed is the dependent variable;	allow time as the dependent variable	
	MP5. any one control variable from;	allow 'keep constant' for 'control variable'	
	 size / mass / material / area /weight of block 		
	 height/angle/gradient of ramp 		
	 initial force given to block 	allow 'push' given to block	
		allow initial speed or velocity	
	distance travelled down the ramp	allow same starting	
		point and finishing point	
	determining average speed:		
	MP6. use of (average) speed = distance travelled / time	accept use of light gate if description includes	
		length of card/block	
	•	and time of transit	
(b)	 (bar chart because) surface material is a {categoric / discontinuous / non-continuous} variable; 	condone surface material being a	1
	r discontinuous r tion continuous r variable;	discrete variable	
		I	