PURE MATHEMATICS

UNIT P3(IAL) 2019 — 2023

Chapter 1	Algebra And Functions	Page 1
Chapter 2	Coordinate Geometry In The (X, Y) Plane	Page 21
Chapter 3	Trigonometry	Page 23
Chapter 4	Differentiation	Page 39
Chapter 5	Integration	Page 58
Chapter 6	Proof	
Chapter 7	Sequences And Series	
Chapter 8	Exponentials And Logarithms	Page 70
Chapter 9	Numerical Methods	Page 80
Chapter 10	Binomial Expansion	
Chapter 11	Vectors	
	ANSWERS	Page 87

1 - (WMA11/P3(IAL)_Summer_2020_Q3) - Algebra And Functions

Figure 1

Figure 1 shows a sketch of a curve with equation y = f(x) where

$$f(x) = \frac{2x+3}{\sqrt{4x-1}} \qquad x > \frac{1}{4}$$

(a) Find, in simplest form, f'(x).

(4)

(b) Hence find the range of f.

(3)

2 - (WMA11/P3(IAL)_Summer_2020_Q4) - Algebra And Functions

Figure 2

Figure 2 shows a sketch of part of the graph with equation y = f(x) where

$$f(x) = 21 - 2|2 - x|$$
 $x \ge 0$

(a) Find ff(6)

(2)

(b) Solve the equation f(x) = 5x

(2)

Given that the equation f(x) = k, where k is a constant, has exactly two roots,

(c) state the set of possible values of k.

(2)

The graph with equation y = f(x) is transformed onto the graph with equation y = af(x - b)

The vertex of the graph with equation y = af(x - b) is (6, 3).

Given that a and b are constants,

(d) find the value of a and the value of b.

(2)

3 - (WMA11/P3(IAL)_Winter_2020_Q1) - Algebra And Functions

A population of a rare species of toad is being studied.

The number of toads, N, in the population, t years after the start of the study, is modelled by the equation

$$N = \frac{900e^{0.12t}}{2e^{0.12t} + 1} \qquad t \ge 0, t \in \mathbb{R}$$

According to this model,

(a) calculate the number of toads in the population at the start of the study,

(1)

(b) find the value of t when there are 420 toads in the population, giving your answer to 2 decimal places.

(4)

(c) Explain why, according to this model, the number of toads in the population can never reach 500

(1)

2019 - 2023 Powered By: www.exam-mate.com

4 - (WMA11/P3(IAL)_Winter_2020_Q2) - Algebra And Functions

The function f and the function g are defined by

$$f(x) = \frac{12}{x+1} \qquad x > 0, x \in \mathbb{R}$$

$$g(x) = \frac{5}{2} \ln x \qquad x > 0, x \in \mathbb{R}$$

(a) Find, in simplest form, the value of fg(e2)

(2)

(b) Find f^{-1}

(3)

(c) Hence, or otherwise, find all real solutions of the equation

$$f^{-1}(x) = f(x)$$

(3)

5 - (WMA11/P3(IAL)_Winter_2020_Q4) - Algebra And Functions, Trigonometry

(i)
$$f(x) = \frac{(2x+5)^2}{x-3} \qquad x \neq 3$$

- (a) Find f'(x) in the form $\frac{P(x)}{Q(x)}$ where P(x) and Q(x) are fully factorised quadratic expressions.
- (b) Hence find the range of values of x for which f(x) is increasing.

(6)

(ii)

$$g(x) = x\sqrt{\sin 4x} \qquad 0 \leqslant x < \frac{\pi}{4}$$

The curve with equation y = g(x) has a maximum at the point M.

Show that the x coordinate of M satisfies the equation

$$\tan 4x + kx = 0$$

where k is a constant to be found.

(5)

6 - (WMA11/P3(IAL)_Winter_2020_Q6) - Algebra And Functions

Figure 2

Figure 2 shows part of the graph with equation y = f(x), where

$$f(x) = 2|2x - 5| + 3$$
 $x \ge 0$

The vertex of the graph is at point P as shown.

(a) State the coordinates of P.

(2)

(b) Solve the equation f(x) = 3x - 2

(4)

Given that the equation

$$f(x) = kx + 2$$

where k is a constant, has exactly two roots,

(c) find the range of values of k.

(3)

ANSWERS

2019 - 2023 87

1 - (WMA11/P3(IAL)_Summer_2020_Q3) - Algebra And Functions

(a)
$$\frac{dy}{dx} = \frac{(4x-1)^{\frac{1}{2}} \times 2 - (2x+3) \times 2(4x-1)^{-\frac{1}{2}}}{(4x-1)}$$

$$\frac{(4x-1)^{\frac{1}{2}} \times 2 - (2x+3) \times 2(4x-1)^{-\frac{1}{2}}}{(4x-1)} \times \frac{(4x-1)^{\frac{1}{2}}}{(4x-1)^{\frac{1}{2}}} = \frac{4x-8}{(4x-1)^{\frac{3}{2}}}$$
(b) Turning point where $\frac{dy}{dx} = 0 \Rightarrow x = 2$
Find value of f at $x = 2 \Rightarrow f(x) = \sqrt{7}$ Hence range is $f \geqslant \sqrt{7}$
(d)

M1 A1

(4)

M2 A1

(4)

(5)

(6)

(7)

(7)

(7)

(7)

2 - (WMA11/P3(IAL)_Summer_2020_Q4) - Algebra And Functions

(a)	ff(6) = f(13) = -1	Ml Al	
			(2)
(b)	Attempts $21 + 2(2 - x) = 5x \Rightarrow x = \dots$ or $21 - 2(x - 2) = 5x \Rightarrow x = \dots$	M1	
	$x = \frac{25}{7}$ only	A1	
			(2)
(c)	Either $k < 21$ or $k \geqslant 17$	Ml	
	17≤ k < 21	A1	
			(2)
(d)	$a = \frac{1}{7} b = 4$	B1 B1	
			(2)
		(8 n	arks)

3 - (WMA11/P3(IAL)_Winter_2020_Q1) - Algebra And Functions

((a)	$P_{\scriptscriptstyle 0} = 300$	B1	
				(1)
(1	b)	$420 = \frac{900e^{0.12t}}{2e^{0.12t} + 1} \Longrightarrow 60e^{0.12t} = 420$	M1 A1	
		Correct use of lns $\Rightarrow t = \frac{\ln 7}{0.12} = 16.22$	dM1 A1	
(0	:)	States that maximum number (upper limit) is 450 so cannot reach 500	B1	(4)
	<i>'</i>			(1)
			6 marks	

2019 - 2023 88 Powered By: www.exam-mate.com

4 - (WMA11/P3(IAL)_Winter_2020_Q2) - Algebra And Functions

(a)	$fg(e^2) = f(\frac{5}{2}\ln e^2) = \frac{12}{\frac{5}{2}\ln e^2 + 1}, = 2$	M1, A1
(b)	$f(x) = \frac{12}{x+1}$	(2)
	$f^{-1}(x) = \frac{12}{x} - 1$ $0 < x < 12$	M1 A1 B1
(c)	$\frac{12}{x+1} = \frac{12}{x} - 1 \Rightarrow 12x = 12(x+1) - x(x+1)$ $\Rightarrow x^2 + x - 12 = 0 \Rightarrow x = $ Must be 3TO	M1 (3)
	$\Rightarrow x^2 + x - 12 = 0 \Rightarrow x = \dots$ $x = 3 \text{ only}$ Must be 3TQ	A1 (3) 8 marks
(c) Alts	Solves $f^{-1}(x) = x \Rightarrow \frac{12}{x} - 1 = x$ leading to quadratic equation,	M1
	or solves $f(x) = x \Rightarrow \frac{12}{x+1} = x$ leading to quadratic equation $\Rightarrow x^2 + x - 12 = 0 \Rightarrow x =$ Must be 3TQ x = 3 only	dM1 A1
		(3)

5 - (WMA11/P3(IAL)_Winter_2020_Q4) - Algebra And Functions, Trigonometry

(i) (a)	$f'(x) = \frac{4(x-3)(2x+5)-(2x+5)^2}{(x-3)^2} \text{ or } \frac{(x-3)(8x+20)-(4x^2+20x+25)}{(x-3)^2}$	M1 A1
	$=\frac{(2x+5)(2x-17)}{(x-3)^2}$	M1 A1
(b)	Attempts both critical values or finds one "correct" end	M1
	$x < -2.5, x > 8.5 \text{ (accept } x \le -2.5, x \ge 8.5)$	A1
		(6)
(ii)	Attempts the chain rule on $(\sin 4x)^{\frac{1}{2}} \to A(\sin 4x)^{\frac{1}{2}} \times \cos 4x$	M1
	$g(x) = x(\sin 4x)^{\frac{1}{2}} \Rightarrow g'(x) = (\sin 4x)^{\frac{1}{2}} + x \times \frac{1}{2}(\sin 4x)^{-\frac{1}{2}} + 4\cos 4x$	M1 A1
	Sets $g'(x) = 0 \rightarrow (\sin 4x)^{\frac{1}{2}} + x \times \frac{2\cos 4x}{(\sin 4x)^{\frac{1}{2}}} = 0$ and $\times \frac{(\sin 4x)^{\frac{1}{2}}}{\cos 4x}$ oe	M1
	$\rightarrow \tan 4x + 2x = 0$	A1
		(5)
		11 marks

2019 - 2023 89 Powered By : www.exam-mate.com

9 marks

6 - (WMA11/P3(IAL)_Winter_2020_Q6) - Algebra And Functions

(a)	(2.5, 3) oe	B1 B1
		(2)
(b)	Attempts one solution usually $4x-10+3=3x-2 \Rightarrow x=5$	MI Al
	Attempts both solutions $-4x+10+3=3x-2 \Rightarrow x=\frac{15}{7}$	dM1 A1
		(4)
(c)	Attempts to solve $y = kx + 2$ with $x = 2.5, y = 3$ or states that $k < 4$	M1
	$k\frac{2}{5}$	Al
	States $\frac{2}{5} < k < 4$	A1
	3	(3)

7 - (WMA11/P3(IAL)_Winter_2020_Q9) - Trigonometry, Algebra And Functions

(a)	$R = \sqrt{41}$	B1	
	$\tan \alpha = \frac{4}{5} \Rightarrow \alpha = \text{awrt } 0.675$	M1A1	
			(3)
(b)	(i) Describes stretch: stretch in the y direction by " $\sqrt{41}$ "	B1 ft	
	(ii) Describes translation: E.g. translate by $\begin{bmatrix} -\arctan\frac{4}{5} \\ 0 \end{bmatrix}$	Bl ft	
			(2)
(c)	Attempts either $g(\theta) = \frac{90}{4 + (\sqrt{41})^2}$ OR $g(\theta) = \frac{90}{4}$	MI	
	Range $2 \leq g(\theta) \leq 22.5$	A1	
	. 40		
			(2)
		7 marks	